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Preface

Computer vision is the science and technology of making machines that see. It is
concerned with the theory, design and implementation of algorithms that can auto-
matically process visual data to recognize objects, track and recover their shape and
spatial layout.

The International Computer Vision Summer School - ICVSS was established
in 2007 to provide both an objective and clear overview and an in-depth analysis
of the state-of-the-art research in Computer Vision. The courses are delivered by
world renowned experts in the field, from both academia and industry, and cover
both theoretical and practical aspects of real Computer Vision problems. The school
is organized every year by University of Cambridge (Computer Vision and Robotics
Group) and University of Catania (Image Processing Lab). Different topics are cov-
ered each year. A summary of the past Computer Vision Summer Schools can be
found at: http://www.dmi.unict.it/icvss

This edited volume contains a selection of articles covering some of the talks
and tutorials held during recent editions of the school and covering some of the
key topics of machine learning for computer vision. The chapters provide both an
in-depth overview of challenging areas and key references to the existing literature.
The book starts with two chapters devoted to introducing the reader to the excit-
ing fields of Machine Learning and Computer Vision. In Chapter 1 the problem of
producing truly intelligent machines is discussed and the “neuromorphic” approach
is introduced. Chapter 2 introduces the notion of visual information and its relevant
properties useful to accomplish visual inference tasks. Chapter 3 reviews algorithms
to rapidly search images or videos in large collections, whereas Chapter 4 discusses
the problem of object recognition and introduces generative models able to take into
account transformations of geometry and reflectance. Chapter 5 describes a method
to quickly and accurately predict 3D positions of body joints from a single depth
image. Chapter 6 describes a fast vote-based approach for 3D shape recognition
and registration. Chapter 7 introduces novel multi-classifier boosting algorithms for
object detection, tracking and segmentation tasks, whereas in Chapter 8 the prob-
lem of tracking objects using multiple cameras is described together with related

http://www.dmi.unict.it/icvss
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algorithms. Finally, Chapter 9 complete the book by presenting a vision system for
the challenging task of autonomous driving vehicles.

It is our hope that graduate students, young and senior researchers, and aca-
demic/industrial professionals will find the book useful for understanding and re-
viewing current approaches in Computer Vision, thereby continuing the mission of
the International Computer Vision Summer School.

Sicily, January 2012 Roberto Cipolla
Sebastiano Battiato

Giovanni Maria Farinella
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Throwing Down the Visual Intelligence Gauntlet

Cheston Tan, Joel Z. Leibo, and Tomaso Poggio

Abstract. In recent years, scientific and technological advances have produced
artificial systems that have matched or surpassed human capabilities in narrow do-
mains such as face detection and optical character recognition. However, the prob-
lem of producing truly intelligent machines still remains far from being solved. In
this chapter, we first describe some of these recent advances, and then review one
approach to moving beyond these limited successes – the neuromorphic approach
of studying and reverse-engineering the networks of neurons in the human brain
(specifically, the visual system). Finally, we discuss several possible future direc-
tions in the quest for visual intelligence.

1 Artificial Intelligence: Are We There Yet?

Every few years (and sometimes more often), the world becomes abuzz with ex-
citement over some new technology that, finally, after all these years, promises to
fulfill the dream of Artificial Intelligence (AI), first proposed back in 1956 at the
dawn of the Age of Computing. The latest of these technologies is Watson, a natural
language question-answering computer system that, in February 2011, defeated two
of the best human contestants ever in the quiz show Jeopardy!

In 2007, the buzz-worthy news was that six teams successfully completed the
DARPA Grand Challenge [3], a simulated 60-mile urban course designed to test the
capabilities of driverless vehicle systems. The overall winner completed the course
just over 4 hours, averaging approximately 14 mph. Just two years prior, in 2005,
five teams completed the 132-mile off-road desert course, a stunning reversal of the
2004 results, in which the best vehicle only managed to complete an embarrassing
7.36 miles of the 150-mile course [3].
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Apart from these and other headline-grabbing milestones like chess-playing com-
puter Deep Blue defeating the reigning world chess champion in 1997, there have
also been a host of less-publicized technological advances that have matched (and
sometimes even surpassed) human abilities. These include face-detection technol-
ogy in digital cameras [4], a pedestrian-detection feature in the latest luxury car
models [1, 6], and optical character recognition (OCR) technology used by postal
services [9] around the world, just to name a few.

Meanwhile, in the realm of computer vision, performance of algorithms on com-
mon datasets such as Caltech-101 [2] and PASCAL [8] have improved steadily over
the years. While typical human performance on these datasets has not been quanti-
fied, it is not unimaginable that computers may reach this performance benchmark
in a decade or less.

Given this plethora of advances and achievements that would be utterly jaw-
dropping to the early pioneers of computing and AI, should we thus conclude that
victory in achieving AI is close at hand? Our answer is a clear no. None of these
systems or computers can really be described as intelligent in the way that one
would describe a person. Each of these systems performs well in a narrow domain
such as categorizing objects or playing chess, but two key characteristics of human
intelligence are broadness and flexibility. A typical person is capable of learning not
only chess, but hundreds of other games. With sufficient training, a typical person
would also be able to become good at any of these.

One might argue that if various artificial systems achieve human-level perfor-
mance in a sufficient number of these narrow domains, then putting these com-
ponents together in a single system would result in some semblance of human
intelligence. We think otherwise – such a system may fulfill the criterion of broad-
ness, but it would lack flexibility.

We do not mean to downplay the amazing advances in computing that have oc-
curred and are occurring. Computers have changed our lives for the better to an
extent that almost no other technology has, and the advances mentioned above will
no doubt further these changes in exciting and dramatic ways. The ongoing pur-
suit of tangible engineering solutions to pressing challenges is an important and
worthwhile research agenda. However, the goal of replicating broad and flexible
human-like intelligence will not be achieved just by stringing together the solutions
to specialized problems.

1.1 A Compass for the Uncharted Journey towards Intelligence

One approach (arguably the default one) to move beyond the limitations of tackling
narrow domains in isolation, is to study the brain – a computational system which we
already know exhibits intelligence. However, much of the computation in the brain
is still poorly understood. Understanding how the individual functioning of billions
of brain cells leads collectively to human intelligence and cognition remains a major
challenge.
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Nonetheless, a good bet – and the one we make – is that in order to rise to the
challenge, we need to understand how the visual cortex works, and then reproduce
it in computers. Vision is one of the most studied aspects of human cognition, and
over one-third of the cerebral cortex (the seat of cognition) is dedicated to visual
processing. Replicating intelligence will ultimately require more than just under-
standing visual cognition, but it is likely to be the best place to start.

This neuromorphic approach does not imply the slavish, neuron-by-neuron re-
production of the human visual system. Just like how the marvels of modern flight
have been enabled by the scientific understanding of the principles of aerodynamics,
we believe that the key to unlocking intelligence is to investigate its principles by
studying systems that truly exhibit intelligence (and to validate our understanding
of these principles by building testable computational models).

In the rest of this chapter, we first briefly review some of the computational princi-
ples underlying visual intelligence in the cortex, and then proceed to sketch the first
steps towards replicating theseprinciples incomputationalmodels.Finally,wediscuss
several suggestions for moving research forward in the direction of true intelligence.

2 The Neuromorphic Approach to Visual Intelligence

By now, there are probably several hundred models of the visual cortex. Most deal
with specific visual phenomena (such as visual illusions) or specific parts of the
visual cortex. Many of these have yielded useful contributions to neuroscience.
However, if the goal is to use these models to guide the engineering of a new gener-
ation of systems that approach human visual intelligence, then more comprehensive
models addressing a wide range of phenomena and visual areas are needed. Thus,
in this section, we review a computational model of visual cortex that fulfills pre-
cisely these criteria. This model (or more precisely, this class of models) provides
a preliminary but illustrative sketch of how computations performed by the visual
cortex are closely linked to the principles underlying visual intelligence (at least for
two principles, among the few that are currently known). First, however, we briefly
review relevant background knowledge regarding the visual cortex.

2.1 Anatomy and Physiology of the Primary Visual Cortex (V1)

Neural recordings from the primary visual cortex (also known as V1) of cats in the
early 1960s by Nobel laureates1 David Hubel and Torsten Wiesel yielded the ob-
servation of so-called simple cells responding to edges of a particular orientation.
Hubel and Wiesel also described another class of cells with more complicated re-
sponses which came to be called complex cells. In the same publication [15], they

1 One half of the 1981 Nobel Prize in Physiology or Medicine was jointly awarded to Hubel
and Wiesel. The other half was awarded to Roger Sperry.
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Fig. 1 Construction of V1 simple and complex cell receptive fields via convergent inputs.
(Adapted from Hubel and Wiesel 1962)

hypothesized that (at least some of) the complex cells may be receiving their inputs
from the simple cells.

The simple cells’ receptive fields2 contain oriented “on” regions in which pre-
senting an appropriately-oriented edge stimulus excited the cells, and “off” regions
for which presenting a stimulus suppresses neural activity. These classical Gabor-
like receptive fields can be understood by noting that they are easily built from
a convergence of inputs from cells in the lateral geniculate nucleus (LGN), a brain
structure from which V1 receives strong inputs. The simple cells respond only when
receiving simultaneous inputs from several LGN cells with receptive fields arranged
along a line of the appropriate orientation. Fig. 1a is a reproduction of Hubel and
Wiesel’s original drawing from their 1962 publication illustrating the appropriate
convergence of LGN inputs.

In contrast to simple cells, Hubel and Wiesel’s complex cells respond to edges
with particular orientations, but notably have no “off” regions where stimulus pre-
sentation reduces responses. Most complex cells also have larger receptive fields
than simple cells, i.e., an edge of the appropriate orientation will stimulate the cell
when presented anywhere over a larger region of space. Hubel and Wiesel noted that

2 A cell’s receptive field is a region of visual space in which the presence of a stimulus will
affect the activity of that cell.
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the complex cell fields could be explained by a convergence of inputs from simple
cells. Fig. 1b reproduces their scheme.

Following Hubel and Wiesel, we say that the simple cells are tuned to a particular
preferred feature. This tuning is accomplished by weighting the LGN inputs in such
a way that a simple cell fires when the inputs arranged to build the preferred feature
are co-activated. In contrast, the complex cells’ inputs are weighted such that the
activation of any of their inputs can drive the cell by itself. So the complex cells are
said to pool the responses of several simple cells. As information about the stimulus
passes from LGN to V1, its representation increases in selectivity; patterns without
edges (such as sufficiently small circular dots of light) are no longer represented.
Then, as information passes from simple cells to complex cells, the representation
gains tolerance to the spatial position of the stimulus. Complex cells downstream
from simple cells that respond only when their preferred feature appears in a small
window of space, now represent stimuli presented over a larger region.

2.2 Hubel-Wiesel Models: Successive Tuning and Pooling

Beyond V1, visual cortex is broadly organized into two parallel processing streams,
a ventral stream mostly involved in analysis of shape information, and a dorsal
stream mostly involved in analysis of motion and location [23]. Both streams are
organized hierarchically, with receptive field sizes and preferred feature complexity
increasing along the way from their starting point in V1 to subsequent areas (see
Fig. 2). The present chapter focuses on the ventral stream, but see [18] for related
models of the dorsal stream.

At the top of the ventral hierarchy, the cells in inferotemporal (IT) cortex respond
selectively to highly complex stimuli, and invariantly over several degrees of visual
angle. Hierarchical models inspired by the work of Hubel and Wiesel [10, 13, 22, 25,
28, 30, 32, 37, 39], henceforth termed H-W models ( [28, 30, 32] were previously
known as HMAX), seek to achieve similar selectivity and invariance properties by
subjecting visual inputs to successive – and often alternating – tuning and pooling
operations, just like how V1 simple cells are tuned to specific patterns of LGN in-
puts and complex cells pool the responses of simple cells with similar orientation
selectivity. A major algorithmic claim made by these H-W models is that the re-
peated application of AND-like tuning is the source of the selectivity in IT cortex.
Likewise, repeated application of OR-like pooling produces invariant responses.

H-W models nicely illustrate the close correspondence between visual intelli-
gence and the visual cortex. Through careful scientific study, the idealized tuning
and pooling operations in H-W models have been distilled from the jumble of neu-
ral activity in the visual cortex. These operations are, not surprisingly, associated
with the principles of selectivity and invariance that underlie object recognition – an
important component of visual intelligence.
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Fig. 2 Areas of the visual cortex. Each rectangle represents a visual area; the size is propor-
tional to cortical surface area. The lines connecting the areas have a thickness proportional to
the estimated number of fibers in the connection. Ventral stream areas are in the bottom half;
dorsal stream areas are in the upper half. (Reprinted from [38])

2.3 Consistency with Experimental Results at Multiple Levels

H-W models were constructed based on the dual principles of selectivity and in-
variance, derived initially from the study of V1 but also subsequently found in other
visual areas. The key test of any model, however, is the consistency of its predictions
with phenomena beyond those used in its construction.

In that regard, recent H-W models are consistent with experimental findings at
multiple levels of analysis, from the computational to the biophysical level. Being
consistent across all these levels is a high bar and an important one. It is relatively
easy to develop models that just explain one phenomenon or one illusion or one
visual area, but they remain just that: a model of that one thing. Such narrow models
are not useful for guiding future research on the general problems of vision and
intelligence.

Predictions of H-W models (in particular, the HMAX model [28, 30, 32]), have
generally fared well when checked against experimental results. In this section, we
briefly review evidence from electrophysiology and psychophysics in relation to this
class of models. A more comprehensive list of comparisons between experimental
and model data can be found in Fig. 3 (also see [29, 30] for more details).
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Fig. 3 Summary of comparisons between data from biological experiments and from the
HMAX model. (Adapted from [31])
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Fig. 4 Comparison of position- and scale-invariant decoding of stimulus category from pop-
ulations of IT and model units. Both generalize fairly well when tested on novel positions and
scales (TEST), after training on objects of a specific position and scale (TRAIN). See [16, 29]
for more details. (Adapted from [16, 29])

Beginning in the primary visual cortex, an electrophysiology study in cats un-
covered evidence that the brain employs an OR-like pooling operation, predicted by
Riesenhuber and Poggio [28] as the mechanism by which complex cell receptive
fields are built from simple cells [20]. Further evidence for this operation was inde-
pendently found in area V4 (a visual area that receives inputs from V1) in rhesus
monkeys [14], confirming that this key operation exists in multiple visual areas.

In addition, single-unit electrophysiology experiments in area V2 revealed that
neurons in this area are sensitive to combinations of orientations [11], consistent
with the AND-like tuning operation in the model [28]. Furthermore, a quantitative
fit was established between H-W model units and the firing rates of V4 neurons
evoked by a library of stimuli. This model was fit with data from a subset of cells,
and could generalize to predict the responses of other cells to novel stimuli [12].

H-W models have been particularly influential in the study of IT cortex, the visual
area situated at the top of the hierarchy of shape-processing areas. It is possible to
decode object category information invariantly to translation and scaling from the
responses of a population of IT cells [16]. The top-most layer of an H-W model
also supports similar decoding (see Fig. 4). It is this observation that populations
of IT cells and H-W model units both provide useful representations for decoding
stimulus information which motivates much of the interest in IT cortex from the
computer vision and neuroscience communities.
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Importantly, H-W models demonstrate human performance levels on certain psy-
chophysical tasks. Human observers can categorize scenes containing a particular
prominent object, such as an animal or a vehicle, after only 20 ms of exposure. Old
EEG experiments in humans, but also especially new data obtained with a “read-
out” information decoding technique, show category information in the neural pop-
ulation of IT of the macaque at 80ms after a stimulus is seen. These experimental
results establish a lower bound on the latency of visual categorization decisions
made by the human visual system, and suggest that categorical decision-making
can be implemented by a feedforward information processing mechanism like an
H-W model [19, 21, 33, 34, 36]. Serre et al. showed that a specifc H-W model does
indeed reach human-level performance on this task [30]. Many of the individual im-
ages on which the model failed the task were also the most difficult for humans to
discriminate – suggesting a deep correspondence between the model’s mechanisms
and those implemented by human visual cortex (Fig. 5).

Fig. 5 Comparison between the model and humans on the task of categorizing rapidly-
presented scenes as either containing an animal or not. (a) The model and humans exhibit
a similar pattern of performance. (b–e) Examples of classifications by the model and human
observers. The percentages above each thumbnail correspond to the number of times the im-
age was classified as containing an animal by the model or by humans. Common false alarms
(b) and misses (c) for the model and human observers. (d, e) Examples of animal images
for which the agreement between the model and human observers is poor (d) and good (e).
Overall correlations between human and model classification are 0.71, 0.84, 0.71 and 0.60 for
the “Head”, “Close-body”, “Medium-body” and “Far-body” images respectively. (Reprinted
from [30]. Copyright 2007, National Academy of Sciences, USA)
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2.4 From Neuroscience Models to Engineering Applications

While H-W models clearly have a long way to go before they begin to approach
human levels of broad visual intelligence, they have nonetheless shown success be-
yond the realm of neuroscience by proving useful for computer vision.

Recently, one H-W model based on the motion-processing dorsal stream of visual
cortex has been found to match human performance on the task of recognizing and
annotating mouse behaviors in video clips [17]. Many biological experiments deal-
ing with genetically-modified strains of mice require laborious human annotation
of many hours of video in order to quantitatively analyze effects of the various ge-
netic modifications performed in the quest for understanding diseases such as autism
and Parkinson’s disease. The neuromorphic model was developed into a trainable,
general-purpose system capable of automatically analyzing complex mouse behav-
iors, performing on par with humans and outperforming a current commercial, non-
neuromorphic system [5].

Furthermore, the adherence to neuromorphism has not significantly disadvan-
taged H-W models in terms of performance on standard computer vision datasets.
At various points in time, these models have matched or surpassed state-of-the-art
systems on datasets such as CalTech101 [24, 32] and Labeled-Faces-in-the-Wild
(LFW) [27, 26]. These results reinforce the belief that ultimately, the quest to un-
derstand the key properties of biological intelligence will be essential in producing
truly intelligent artificial systems.

3 What’s Next in the Quest for Visual Intelligence?

Thus far, we have argued for the neuromorphic approach to tackling the challenge of
achieving human-level visual intelligence, and then reviewed the successes of this
approach up to this point. In this final section, we briefly describe some suggestions
as to how computational neuroscience and computer vision should proceed from
this point onwards.

3.1 Going beyond “What Is Where”

Much of computer vision research today is geared towards the “what” and “where”
problems. Specifically, “what” problems include the detection and categorization of
objects and actions, while “where” problems include localization, segmentation and
tracking. However, as alluded to earlier, although determining “what is where” in an
image is an important part of vision, visual intelligence is much more than that.

Take, for instance, the task of connecting an Ethernet cable to a laptop computer.
Visually, this simple task consists of several sub-tasks, including finding potential
locations on the surface of the laptop where the cable’s connector might fit, as well
as determining which orientation the connector should be held at. Certainly, these



Throwing Down the Gauntlet 11

sub-tasks include traditional “what” and “where” problems (e.g., segmentation of
the laptop; detecting and localizing a region that matches the connector shape), but
the greater challenge is determining precisely what these sub-tasks should be.

3.2 From Perception to Abstraction

Another example of how visual intelligence goes beyond “what is where” in-
volves abstract visual concepts. Take, for example, the concepts of “peaceful” or
“crowded”; images can be classified (albeit somewhat subjectively) as being “peace-
ful” or not, and being “crowded” or not3. Yet, these abstract notions are not so much
about specific objects and their locations, but rather about properties of the image
as a whole.

Even specific objects themselves have abstract properties. Every object has a
physical size in terms of pixels, but the property of conceptual size (i.e., “largeness”)
depends on several factors, including inferred size (by determining the correspond-
ing real-world scale of the depicted scene, if applicable), as well as comparisons to
typical sizes of other instances from the same object category.

People are also good at identifying somewhat abstract actions from single static
images. Shimon Ullman gives the example of identifying drinking (see Fig. 6). Cur-
rent systems can probably recognize that these images contain liquids, cups, glasses,
bottles, hands, mouths, etc. However, such systems do not encode the higher level
knowledge that one form of drinking consists of using a cup to bring liquid towards
a mouth, or that alternative forms of drinking are also valid.

3.3 A Loose Hierarchy of Visual Tasks

The “what” and “where” problems can be considered to be predominantly percep-
tual. It is clear that visual intelligence spans a variety of problems, ranging from
these perceptual ones, to the more abstract or cognitive ones described earlier. It
may be useful to conceptualize or organize the challenge of visual intelligence into
a loose hierarchy of visual tasks, with the “easy” perceptual tasks at the bottom, and
the most abstract tasks at the top4. If the Turing Test [35] is a yardstick for general
human intelligence, then this collection of visual tasks can be considered to be a
measure of visual intelligence – a Visual Turing Test, so to speak.

Such a big-picture view of things may be important for guiding research, par-
ticularly if the goal is to create a single system that can accomplish all the tasks.
For instance, focusing on a single task such as object categorization may lead to
certain algorithms or approaches being considered state-of-the-art. However, such

3 Determining the images for which these classification tasks do not make sense in the first
place is also part of visual intelligence.

4 The idea being that, roughly speaking, only the more “intelligent” systems should be able
to perform tasks near the top of the hierarchy.
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Fig. 6 All of these images contain drinking. Credit: Shimon Ullman

algorithms, by virtue of being extremely good at one thing, could inadvertently
turn out to be poorly-suited for other tasks – falling into a local minimum, in some
sense5. By laying out the bigger picture of tasks to be performed, research efforts
are more likely to be directed towards approaches that are more general.

3.4 It’s Time to Try again – The MIT Intelligence Initiative

Finally, we conclude this chapter by describing efforts in our lab and others at MIT
to once again attempt to tackle the problem of intelligence, visual and otherwise –
the MIT Intelligence Initiative [7].

The problem of intelligence – the nature of it, how the brain generates it and how
it could be replicated in machines – is arguably one of the deepest and most impor-
tant problems in science today. Philosophers have studied intelligence for centuries,
but it is only in the last several decades that key developments in a broad range of
science and engineering fields have opened up a thriving “intelligence research” en-
terprise, making questions such as these approachable: How does the mind process
sensory information to produce intelligent behavior – and how can we design intel-
ligent computer algorithms that behave similarly? What is the structure and form of
human knowledge – how is it stored, represented and organized?

5 These algorithms are of course still very valuable for solving specific problems.
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Many of us at MIT believe that the time has come for a new, fresh attack on these
problems. The launching off point will be a new integration of the fields of cog-
nitive science, which studies the mind, neuroscience, which studies the brain, and
computer science and artificial intelligence, which develop intelligent hardware and
software. These fields grew up together in the 1950s, but drifted apart as each be-
came more specialized. In the 21st century, they are re-converging as a result of new
advances that allow studies of the brain and mind to inform the design of intelligent
artifacts and vice versa. Hence, for the original, daring goals of understanding and
replicating intelligence, perhaps it is time to try again.
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Actionable Information in Vision

Stefano Soatto

Abstract. A notion of visual information is introduced as the complexity not of the
raw images, but of the images after the effects of nuisance factors such as viewpoint
and illumination are discounted. It is rooted in ideas of J. J. Gibson, and stands in
contrast to traditional information as entropy or coding length of the data regardless
of its use, and regardless of the nuisance factors affecting it. The non-invertibility
of nuisances such as occlusion and quantization induces an “information gap” that
can only be bridged by controlling the data acquisition process. Measuring visual
information entails early vision operations, tailored to the structure of the nuisances
so as to be “lossless” with respect to visual decision and control tasks (as opposed to
data transmission and storage tasks implicit in communications theory). The defini-
tion of visual information suggests desirable properties that a visual representation
should possess to best accomplish vision-based decision and control tasks.

1 Preamble

This paper discusses the role visual perception plays in the “signal-to-symbol bar-
rier” problem.

The “signal-to-symbol barrier” stems from the observation that perceptual agents,
from plants to humans, perform measurements of physical processes at a level of gran-
ularity that is essentially continuous.1 They also perform actions in the continuum of
physical space. And yet, cognitive science, primary epistemics, and in general modern

Stefano Soatto
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e-mail: soatto@ucla.edu

1 The continuum is an abstraction, so here “continuous” is to be understood as existing at
a level of granularity significantly finer than the resolution of the measurement device or
actuator. For instance, although retinal photoreceptors are finite in number, we do not per-
ceive discontinuities due to retinal sampling. Even when the sensory signals and the actions
are discrete (e.g., due to digital encoders or transducers), the “analog-to-digital” conversion
usually occurs in a manner that is independent of the signal being sampled (e.g. fixed-rate
sampling), or dependent only on coarse phenomenological aspects of the signal (e.g. adap-
tive sampling based on frequency characteristics or sparsity constraints).
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philosophy, associate “intelligent behavior” with somekind of internal representation
consisting of discrete symbols (“concepts”, “ideas”, “objects”, “categories”) that can
be manipulated with the tools of logic or probabilistic inference. But little is known
about why such a “signal-to-symbol” conversion should occur, whether it would yield
an advantage, or what principles should guide such a discretization process.

Traditional Information Theory, Statistical Decision Theory, and Control The-
ory shed little light on this process, and indeed suggest that it may be counter-
productive. If we consider biological systems as machines that perform actions or
make decisions in response to stimuli in a way that maximizes some decision or
control objective, then Rao and Blackwell ([65] page 88), or the “Data Processing
Inequality,” indicate that the best possible agents would avoid “breaking down the
data into pieces,” i.e. data analysis2, or for that matter any kind of intermediate de-
cision unrelated to the final task, as would instead be necessary to have a discrete
internal representation.3

So, why would we need, or benefit from, an internal representation? Is “intelli-
gence” not possible in an analog setting? Or is data analysis necessary for cogni-
tion? If so, what would be the principles that guides it?

And with respect to the academic field of Computer Vision, why have we been
performing data analysis (edge detection, feature selection, segmentation, image
parsing etc.) against the basic tenets of (traditional) Information and Decision The-
ory? The latter would suggest that, eventually, a reductionist approach where images
are fed raw into a black-box decision or control machine will be most successful.
Or perhaps, on the contrary, the traditional notion of Information should be revised,
and this revision will point to new principles for data analysis, and validate what
Computer Vision scientists have done for decades.

Yet another possibility is that data analysis is not guided by any principle, but
an accident due to the constraints imposed by biological hardware, as implied by
Turing in [77], where he showed that reaction-diffusion partial differential equations
(PDEs) that govern neuronal ion concentrations, although continuous in nature, ex-
hibit discrete solutions. So, if we want to build machines that interact intelligently

2 Note that I refer to data analysis as the process of “breaking down the data into pieces”
(cfr. gr. analyein), i.e. the generally lossy conversion of data into discrete entities. This
is not the case for global representations such as Fourier or wavelet decomposition, or
principal component analysis (PCA), that are unfortunately often referred to as “analysis”
because such techniques were developed in the context of harmonic analysis, a branch of
mathematics. The Fourier transform is globally invertible, which implies that there is no
loss of data, and PCA consists in linear projections onto subspaces.

3 Discretization is often advocated on complexity grounds, but complexity calls for data
compression, not necessarily for data analysis. Any complexity cost could be added to the
decision or control functional, and the best decision would still avoid data analysis. For
instance, to simplify a segment of a radio signal one could represent it as a linear combina-
tion of a small number of (high-dimensional) bases, so few numbers (the coefficients) are
sufficient to represent it in a parsimonious manner. This is different than breaking down
the signal into pieces, e.g. partitioning its domain into subsets, as implicit in the process
of encoding a visual signal through a population of neurons each with a finite receptive
field. So, is there an evolutionary advantage in data analysis, beyond it being just a way to
perform lossy data compression?
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with their surroundings and are not bound by the constraints of biological hardware,
should we draw inspiration from biology, or would it better to jettison it?

The question of representation is ill-posed outside the scope of a task. A task
can be as narrow as a binary decision, such as the presence/absence of a person in a
scene, or as general as “survival,” but in the context of visual perception I distinguish
four broad classes of tasks, which I call the four “R’s” of vision: Reconstruction
(building models of the geometry of the scene), Rendering (building models of the
photometry of the scene), Recognition (or, more in general, vision-based decisions
such as detection, localization, categorization), and Regulation (or, more in general,
vision-based control such as tracking, manipulation etc.).

For Reconstruction and Rendering, I am not aware of any principle that sug-
gests an advantage in data analysis. It is not accidental that the current best ap-
proaches to reconstructing models of the geometry and photometry of a scene from
image streams recover (piecewise) continuous surfaces and radiance functions di-
rectly from the data, as opposed to the traditional multi-step pipeline4 that was long
favored on complexity grounds [53].

In this manuscript, I explore the issue of representation for decision and control
tasks. I will avoid defining “intelligent behavior” or even knowledge, other than
to postulate that knowledge – whatever it is – comes from data, but it is not data.
This leads to the notion of the “useful portion” of the data, which one might call
“information.” So, the first step is understanding what “information” means in the
context of visual perception. That is the subject of this manuscript.

Fig. 1 The Sea Squirt, or Tunicate, is an organism capable of mobility, of predatorial nature,
until it finds a suitable rock to cement itself in place. Once it becomes stationary, it digests
its own cerebral ganglion, or “eats its own brain” and develops a thick covering, a “tunic” for
self defense.

4 A sequence of “steps” including point-feature selection, wide-baseline matching, epipo-
lar geometry estimation, motion estimation, triangulation, epipolar rectification, dense re-
matching, surface triangulation, mesh polishing, texture mapping.
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What I will show is that visual perception plays a key role in understanding the
signal-to-symbol barrier. Specifically, the need to be able to perform decision and
control tasks in a manner that is independent of nuisance factors that affect the image
formation process leads to an internal representation that is intrinsically discrete,
and yet lossless, in a sense to be made clear soon. However, for this to happen the
perceptual agent has to have control over certain aspects of the sensing process. This
ties together inextricably sensing and control, in the sense that without the ability
to control the sensing process with motion, a discrete internal representation would
be a sure loss. A peculiar illustration of this phenomenon is the case of Sea Squirts,
or Tunicates, shown in Fig. 1. These are organisms that possess a nervous system
(ganglion cells) and the ability to move (they are predators), but eventually settle on
a rock, become stationary and thence swallow their own brain.

2 Introduction

More than sixty years ago, Norbert Wiener stormed into his students’ office enunci-
ating “entropy is information!” before immediately storming out.5 Claude Shannon
later made this idea the centerpiece of his Mathematical Theory of Communication,
formalizing and unifying the wide variety of methods that practitioners had been
using to transmit signals through channels. The influence of Shannon’s communica-
tion theory has since spread beyond the transmission and compression of data, and
is now broadly known as Information Theory. But is the entropy of the data really
“information”? There is no doubt that the more complex the data, the more costly
it is to store and transmit. But what if we want to use the data for tasks other than
storage or transmission? What is the “information” that an image contains about the
scene it portrays? What is the value of an image if we are to recognize objects in the
scene, or navigate through it? (Fig. 2).

Despite its pervasive reach today, Shannon’s notion of information had early crit-
ics,6 among those James J. Gibson, who wrote “My theory of the available infor-
mation in ambient light is radically different from [that of] Shannon. [...] My notion
is that information consists of invariants underlying change” [30].7 Already in the
fifties he was convinced that data is not information,8 and the value of data should
depend on what one can do with it, i.e. the task [55]. Much of the complexity in

5 R. Fano, personal communication.
6 Even Shannon’s disciples acknowledge that “Information Theory is a total misnomer [...]

it does not deal with information at all, it deals with data” (R. Gallagher, personal commu-
nication).

7 It is only unfortunate that, in engineering communications, the signals are heavily struc-
tured so the nuisance, often dubbed “noise,” is usually assumed to be additive, zero-mean,
white, and Gaussian. As a consequence, the issue of invariance was never thoroughly ex-
plored, although, interestingly, Wiener was aware of it. In ([82], p. 50) he even introduced
the first (integral) moment as an invariant statistic to a group (eq. (6.01), p. 138) and called
it a gestalt!

8 He was nevertheless rooted in empirical epistemology and therefore assumed that infor-
mation comes from data.
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an image is due to nuisance factors, such as illumination, viewpoint and clutter,9

that have little to do with the decision (perception) and control (action) task at hand.
So it is intuitive that the value of data should relate to its complexity only after the
effects of nuisance factors has been discounted.10 Unfortunately, any constant func-
tion is an “invariant underlying change”, so Gibson was missing the other facet of
information that relates to its “usefulness” (sufficiency) towards the task.

The goal of this manuscript is to define an operational notion of “informa-
tion” that is relevant to visual inference tasks, as opposed to the transmission
and storage of image data. Following Gibson’s lead, I define Actionable Informa-
tion to be the complexity of a maximal statistic that is invariant to the nuisances
associated to a given task. According to this definition, the Actionable Informa-
tion in an image depends not just on the complexity of the data, but also on the
structure of the scene it portrays. I illustrate this on a simple environmental explo-
ration task, that is central to Gibson’s ecological approach to perception. A robot
seeking to maximize Shannon’s information (a “Shannonian Explorer”) is drifting
along unaware of the structure of the environment, while one seeking to maximize
Actionable Information (a “Gibsonian Explorer”) is driven by the topology of the
surrounding space. Both measure the same data (images), but the second is using it

9 I use the word “nuisance” in the standard sense of statistical inference; this does not imply
that nuisance factors are dismissed or irrelevant. It just means that they affect the data,
but not the task. Gibson wrote: “Four kinds of invariants have been postulated: those that
underlie change of illumination, those that underlie change of the point of observation,
those that underlie overlapping samples, and those that underlie a local disturbance of
structure. [...] Invariants of optical structure under changing illumination [...] are not
yet known, but they almost certainly involve ratios of intensity and color among parts
of the array. [...] Invariants [...] under change of the point of observation [...] some of
the changes [...] are transformations of its nested forms, but [...] The major changes are
gain and loss of form, that is, increments and decrement of structures, as surfaces undergo
occlusion.” [...] The theory of the extracting of invariants by a visual system takes the place
of theories of “constancy” in perception, that is, explanations of how an observer might
perceive the true color, size, shape, motion and direction-from-here of objects despite the
wildly fluctuating sensory impressions on which the perceptions are based.” ([31], p. 310).

10 Appealing as the idea of characterizing “invariants under change” sounds in words, a mod-
ern Computer Vision scientist would dismiss it at the outset, for it has since become known
that such invariants do not exist. Invariants were considered “the Holy Grail of Computer
Vision” in the eighties, until [16] and [21] showed that they do not exist neither for view-
point, nor for illumination. Lacking mathematical and computational foundations that en-
able engineering applications, Gibson’s ideas thus remain confined to the realm of phi-
losophy [39] and perception psychology. However, recent developments have shown that
the situation is more complex than commonly assumed: [16] refers to statistics of point
features, not images, and [78] shows instead that non-trivial viewpoint invariants always
exist for images of Lambertian objects of general shape. Similarly, [21] consider general
illumination fields, but invariants can be constructed for simpler illumination models, such
as contrast transformations [2], even though these are valid only locally. Invariance always
refers to an underlying model, that is as good as the assumptions it is based on, and as
useful as the ensuing algorithms are for the task of interest. Invariance to even more re-
stricted classes of transformations is the underpinning of very simple image statistics that
have recently gained significant popularity in visual recognition and categorization tasks.
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to accomplish spatial tasks.11 This manuscript relates to work in information theory,
video compression, robotics, visual recognition, as I discuss in Sect. 7. There, I also
discuss the visual representations that our operative definition implies as “lossless”
relative visual decision or control tasks.

Fig. 2 The left image is more costly to store or transmit than the right image. However, our
goal is to use these images for a decision or control task that involves properties of the scene.

3 Preliminaries

The paper is structured in the following way.

• In the previous section, as a way of motivation, I have argued that tradi-
tional information theory, as developed with an eye towards the problem of

11 It could be argued that Shannon would not seek to maximize the entropy of the data, but
instead the mutual information between the scene and the data (which he called “equivoca-
tion”). Our exercise can be thought of a way to formalize this notion, but avoiding having
to place an explicit probability distribution on the set of scenes, which is a tall order. Fur-
thermore, while it is easy to formally define the mutual information between the scene and
the image, computing it for an erasure channel (occlusions) under compositional infinite-
dimensional domain warpings (viewpoint changes) and multiplicative infinite-dimensional
disturbances (illumination) is not something easily done using the tools developed in clas-
sical Information Theory.
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“reproducing” the output of a source, is inadequate to characterize the value
of an individual image for the purpose of decision or control tasks relative to the
scene that the image portrays. Images are affected by “nuisance factors” that act
on the data in a complex and highly structured fashion. Although closer to our
scope, Gibson’s notion of information as “invariants under change” falls short
because it does not consider the counterpart of invariance, which is the “discrim-
inative” (decision) or “reachable” (control) component of the representation.

• In Sect. 4.1, I introduce the notion of “actionable information” as the complexity
of the maximal statistic that is invariant to a given nuisance. Similarly, I define
“complete information” as the minimal statistic that is sufficient for a given task.
When the nuisance is “invertible”, the two are identical, and their difference, the
“actionable information gap” defined in Sect. 4.3, is zero.

• In the context of vision, viewpoint and illumination – away from visibility arti-
facts such as occlusions and cast shadows – are invertible. However, occlusions,
cast shadows and quantization are not. Therefore, in general, the actionable in-
formation gap is non-zero.12

• The invertibility of a nuisance depends on the control authority of the sensor.
While occlusions and quantization are non-invertible for a passive and static
observer, they become invertible when the observer is able to control the data
acquisition process (Sect. 4.3) for instance by changing viewpoint or accommo-
dation (Fig. 10). Similarly, cast shadows are not invertible in grayscale images,
but may become invertible when one can sample multiple spectral bands. The
process of “information pickup” consists in the exploration of the environment
aimed at closing the information gap (Sect. 4.4).

• While complete information, in general, cannot be measured, actionable in-
formation can be computed. I describe a representational structure that or-
ganizes two-dimensional (region statistics), one-dimensional (boundaries) and
zero-dimensional (attributed points) image characteristics at all scales; its coding
length measures actionable information (Sect. 5). This is a conceptual construc-
tion. Nevertheless, a “poor man’s version” of this construction can be easily and
efficiently computed.

• Since complete information, and therefore the actionable information gap, cannot
be known in advance, perceptual exploration must proceed based on locally com-
putable quantities. I define the Actionable Information Increment as a quantity
that can be computed instantaneously (in the presence of infinitesimal motion)
and integrated over time as part of the exploration process (Sect. 4.3).

• Finally, in Sect. 7 I discuss some consequences of these arguments, including a
suggested set of prescriptions that a visual representation should obey, and their
effects on the “signal-to-symbol barrier.”

Before articulating our arguments, we need to introduce certain definitions, for
which we need some notation.

12 Indeed, it is infinite, for actionable information is zero (there is no occlusion-invariant in
one image) and the complete information is infinity (to compute a sufficient statistic with
respect to occlusion one would have to acquire the entire light field).
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3.1 Notation and Conventions

An image is represented as a function I : D ⊂ R
2 → R

k
+; x �→ I(x) that is L

2-
integrable, but otherwise not necessarily continuous, taking positive values in k
spectral bands, e.g. k = 3 for color, and k = 1 for grayscale. A time-indexed image is
indicated by I(x, t), t ∈ Z+, assuming a discrete temporal sampling, and a sequence
is denoted by {I(x, t)}T

t=1, or simply {I}. The image relates to the scene, which is
represented as a collection of piecewise continuous surfaces (“shape”) S⊂R

3, pos-
sibly parameterized by x, S : D→R

3; x �→ S(x), and a reflectance ρ : S→R
k, which

is also parameterized, with an abuse of notation exploiting visibility constraints, as
ρ(x) .

= ρ(S(x)). I indicate points in space with capital letters X ∈ R
3, and points in

the image with x ∈ R
2. I model illumination changes by contrast transformations,

i.e. monotonically increasing continuous functions h : R+ → R
+. This is a rough

approximation for Lambertian objects viewed under ambient illumination, where
the radiance ρ corresponds to the diffuse albedo. Changes of viewpoint are rigid
body transformations, i.e. elements of the Special Euclidean group g ∈ SE(3), rep-
resented by a translation vector T ∈ R

3 and a rotation matrix R ∈ SO(3), indicated
by g = (R,T ) [53]. As a result of a viewpoint change, points in the image domain
x ∈ D are transformed (warped) via x �→ π(g−1(π−1

S (x)))
.
= w(x), where π : R3→

P
2; X �→ x̄ = λX is an ideal perspective projection and λ−1 = [0 0 1]X ∈ R+ is

the depth along the projection ray [x]
.
= {X ∈ R

3 | ∃ λ ∈ R+,x = λX}; π−1
S is

the inverse projection, that is the point of first intersection of the projection ray [x]
with the scene S. I use the notation w(x;S,g) when emphasizing the dependency of
w on viewpoint and shape. Without loss of generality [72], I represent changes of
viewpoint with diffeomorphic domain deformations w : D⊂ R

2→ R
2. This model

is viable only away from visibility artifacts (occlusions, cast shadows), which are
discussed in Sect. 3.2. All un-modeled phenomena (deviation from Lambertian re-
flection, complex illumination effects etc.) are lumped into an additive “noise” term
n : R2→ R

k. We finally have our image formation model:{
I(x) = h(ρ(X))+ n(x)

x = π(g(X)), X ∈ S.
(1)

Summary: (Refer to Fig. 3) I call the image I, the reflectance ρ , illumination (con-
trast) h, warping w, which depends on the shape S and the viewpoint g. I further
call the scene ξ , the collection of (three-dimensional, 3D) shape and reflectance
ξ .

= {ρ ,S}, and the nuisance ν , the collection of viewpoint and illumination
ν .
= {g,h}. In short-hand notation, substituting X in the first equation above with

g−1(π−1
S (x)), I write (1) as

I(x) = h ◦ρ ◦w(x;S,g)+ n(x)
.
= f (ρ ,S;g,h,n) (2)
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Fig. 3

or, again with an abuse of notation, as

I = f (ξ ;ν).

3.2 Visibility and Quantization

The model (1) is only valid away from visibility artifacts such as occlusions and
cast shadows. I will not deal with cast shadows, and assume that they are either de-
tected from the multiple spectral channels k≥ 3, or that illumination is constant and
therefore they cannot be told apart from material transitions (i.e. in the reflectance
ρ). Occlusions, on the other hand, we cannot do away with. Based on empirical
studies of natural intensity and range statistics [36, 57], I model occlusions as the
“replacement” of f , in a portion of the domain13 Ω ⊂D, by another function β hav-
ing the same statistics [57].14 Sometimes Ω is called the background even though,
in practice, it can be in front of the object of interest, or it can be part of the object
of interest itself, as in self-occlusions:

I(x) =

{
f (ρ ,S;g,h,n) x ∈D\Ω
β (x) x ∈Ω .

(3)

13 Note that Ω is not necessarily simply connected, and this model does not impose restric-
tions on how many depth layers there can be [5].

14 One cannot distinguish an occluding boundary from a material transition in a single pin-
hole image, unless the sensing process enables changes of viewpoint or accommodation
(Fig. 10).
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Digital images are spatially quantized into a discrete lattice, with each element av-
eraging the function I over a small region Bv(xi j) ⊂ D of size v ∈ R+ centered at
xi j = (iv, jv), i, j ∈ Z:

I(i, j) =
∫
Bv(xi j)

I(x)dx = I(xi j)+ n(xi j) (4)

where the quantization error is lumped into the additive noise n. In what follows,
depending on the context, we may lump occlusions Ω ,β , quantization and noise n
among the nuisances ν .

3.3 Invariant and Sufficient Statistics

A statistic, or “feature,” is a deterministic function φ of the data {I(x),x∈D}, taking
values in some vector space, φ(I) ∈ R

K . I indicate this in short-hand notation via
φ(I). A statistic is invariant if its value does not depend to the nuisance, i.e. for any
ν, ν̄ , we have φ( f (ξ ,ν)) = φ( f (ξ , ν̄)). A trivial example of invariant feature is a
constant function φ(I) = c ∀ I. Among all invariant statistics, we are most interested
in the largest15, also called maximal invariant

φ̂(I).

A statistic is sufficient for a particular task, specified by a risk functional R associated
to a control or decision policy u and loss function L, R(u|I) .

=
∫

L(u, ū)dP(ū|I),
R(u)

.
=
∫

R(u|I)dP(I), if the risk based on a policy computed using such a statistic
is the same as the risk based on the raw data, i.e. R(u|I) = R(u|φ(I)). A trivial
example of sufficient statistic is the identity φ(I) = I. Among all sufficient statistics,
of particular interest is the smallest, or minimal, one

φ∨(I).

Note that, in general, R(u|I)≤ R(u|φ(I)) for any measurable function φ (the “Data
Processing Inequality”), with equality defining φ as a sufficient statistic. When a
nuisance acts as a group on the data, it is always possible to construct invariant
sufficient statistics (the orbits, or the quotient of the data under the group). In that
case, the policy u is called an equivariant classifier (for decisions) or controller
(for actions) ([65], Theorem 7.4). It would be possible, as an alternative, to define
sufficient statistics in terms of Fisher’s Information.

15 Maximal in the sense of inclusion of sigma-algebras.
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4 Placing the Ecological Approach to Visual Perception onto
Computational Grounds

4.1 Actionable Information

I define Actionable Information to be the complexity16 H of a maximal invariant,

H(I) .
= H(φ̂ (I)). (5)

When the maximal invariant is also a sufficient statistic, we have the complete in-
formation

I .
= H(φ∨(I)) =H(I). (6)

In this case, the Actionable Information measures all and only the portion of the
data that is relevant to the task, and discounts the complexity in the data due to
the nuisances. As is discussed in Sect. 4.3, invariant and sufficient statistics are, in
general, different sets, so we have an “information gap.” In Sect. 5 I show how to
compute Actionable Information.

In the next section I show that for some nuisances (invertible), the gap can be
reduced to zero, whereas for other nuisances (non-invertible), the gap can be infinite.

4.2 Invertible and Non-invertible Nuisances

Viewpoint g and contrast h act on the image as groups, in the absence of occlusions
and cast shadows, and therefore can be inverted [72]. In other words, the effects of
a viewpoint and contrast change, away from visibility artifacts, can be “neutralized”
in a single image, and an invariant sufficient statistic can, at least in principle, be
computed [72]. Note that the notion of sufficient statistic in this case is with respect
to any distribution, since it is possible to reconstruct an individual realization of the
scene regardless of the nuisance. Fig. 5 illustrates this, and [2] and [78] prove it
for contrast and viewpoint respectively. It may be puzzling that the statistics that
are invariant to contrast (the geometry of the iso-contours of the image [19]) are
not invariant to viewpoint, and those that are invariant to viewpoint (the intensity
of the image warped onto a canonical domain [78]) are not invariant to contrast.
The conundrum was recently solved in [72] where it was shown that the Attributed
Reeb Tree (ART) of a (portion of an) image is the viewpoint-contrast invariant suf-
ficient statistic. The ART stores the label (maximum, minimum, saddle), relative
ordering and connectivity of extrema of the function f in (3) and is supported on a
zero-measure subset of the image domain, so it is somewhat surprising that this

16 Complexity is computed relative to a distribution (entropy) or a code (coding length). For
now, we will leave the description of the underlying distribution or code vague, as the
distribution will be constructed as part of the exploration process. In the meantime, the
user can imagine any distribution induced on the maximal invariant by a distribution for
the raw data, formally indicated by p(I).
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“thin” object is actually equivalent to the entire image but for the effects of view-
point and contrast changes. If these were the only nuisances, we would be in busi-
ness. Unfortunately, this is of little help, as occlusion and quantization are not
groups, and once composed with changes of viewpoint and contrast, the compo-
sition cannot be inverted. Or can they? I will address this issue in Sect. 4.3, but not
before I have described how to compute viewpoint and illumination invariants that
are non-committal with respect to visibility and quantization.

When a nuisance transformation is not a group, its effects cannot be eliminated
via pre-processing, and instead must be dealt with as part of the decision or control
process: The risk functional R depends on the nuisance, R(u| f (ξ ;ν)), which can
be eliminated either by extremization, maxν R(u| f (ξ ;ν)) following a maximum-
likelihood (ML) aproach, or by marginalization

∫
R(u| f (ξ ,ν))dP(ν), following

a maximum a-posterior (MAP17) approach, if a probability measure on the nui-
sance dP(ν) is available.18 In either case, the decision should not be based on direct
comparison of two invariant statistics, φ(I1) = φ(I2) computed separately on the
training/template data I1 and on the testing/target data I2 in a pre-processing stage.
Instead, a costly optimization (ML) or marginalization (MAP) is necessarily per-
formed at run-time. The most one can hope from pre-processing is to pre-compute
as much of the optimization or marginalization functional as possible.

Segmentation as Redundant Lossless Coding

An occlusion Ω ⊂ D, β : Ω → R
k is a region that exhibits the same (piece-wise

spatially stationary [57]) statistics of the unoccluded scene (3). It can be multiply-
connected, generally has piecewise smooth boundaries. Even if we could detect dis-
continuities in the image, which is a tall order, we would still not know which are the
occluding boundaries, as opposed to material transitions or cast shadows. Further-
more, we do not know the statistics of the occluder region, as different quantization
scales can cause image structures (extrema and discontinuities) to appear and disap-
pear. Fig. 5 illustrates this phenomenon. In the absence of quantization and noise, one
would simply detect all possible discontinuities, store the entire set { f (ξ ,ν), ∀ ν},
leaving the last decision bit (occlusion vs. material or illumination boundary) to the
last stage of the decision or control process, performed either by extremization (ML)
or marginalization (MAP). Occluders connecting to the ground (such as the tree in
the “Flower Garden” sequence [23]) where no occlusion boundary is present would
have to be “completed” as advocated by Gestalt psychologists [80], leading to a seg-
mentation, or partitioning, of the image domain into regions with smooth statistics.
Unfortunately, quantized signals are everywhere discontinuous, making the otherwise

17 Invariant classification is problematic in a Bayesian setting, as one has to use improper
uninformative priors; the issue is discussed at length in [63].

18 Consider for example the binary decision of whether two images I1 (training, or template
image) and I2 (testing, or target image) portray the same scene ξ . If the nuisance ν in-
volves occlusions, so that I1 = f (ξ ;ν1) and I2 = f (ξ ;ν2), a decision can be performed
by “searching” for all possible scenes ξ and occlusions ν1,ν2 that generate both images
to within a specified accuracy (threshold). This is equivalent to implicitly “reconstructing”
the scene ξ and “registering” the nuisances ν1,ν2.
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trivial detection of discontinuities all but impossible. One could salvage this approach
by setting up a cost functional (a statistic) ψΩ (I), that implicitly defines a notion of
“discrete continuity” within Ω but not across its boundary, making the problem of
segmentation self-referential (i.e. defined by its solution). But while no single seg-
mentation is “right” or “wrong,” the set of all possible segmentations, defined for all
possible quantization scales, may be useful. It does not reduce the complexity of the
image (in fact, it is highly redundant), but it may reduce the run-time cost of the deci-
sion or control task, by rendering it a choice of regions and scales that match across
images. In Sect. 5 I show how to compute actionable information based on a scale-
space segmentation tree.

For any scale s∈R+, minimizingψΩ (I|s) yields a different segmentationΩ(s)
.
=

argminΩ ψΩ (I|s). Because image “structures” (extrema and discontinuities) can ap-
pear and disappear at the same location at different scales,19 one would have to store
the entire continuum {Ω(s)}s∈R+ . In practice, ψΩ (·|s) will have multiple extrema
(critical scales) that can be stored in lieu of the entire scale-space. This is different
than (single) scale selection, as advocated in the scale-space literature. In between
such critical scales, structures become part of aggregate statistics that are called
textures [69]. See Fig. 5. In Sect. 5 I show how to use a (multi-scale) texture seg-
mentation algorithm to compute actionable information.

As described in Sect. 4.1, in general one cannot compute statistics that are at the
same time invariant and sufficient, because occlusion and quantization nuisances
are not invertible.

4.3 The Actionable Information Gap

As I have hinted at in Sect. 3.2, whether a nuisance is invertible depends on the image
formation process: Cast shadows are detectable if one has access to different spec-
tral bands. Similarly, occluding boundaries cannot be detected from a single image
captured with a pin-hole camera, but they can be detected if one can control accom-
modation or vantage point. So, if the sensing process involves control of the sens-
ing platform (for instance accommodation and viewpoint), then both occlusion and
quantization become invertible nuisances.20 This simple observation is the key to
Gibson’s approach to ecological perception, whereby “the occluded becomes unoc-
cluded” in the process of “Information Pickup” [29].

To make this concrete, recall from Sect. 4.1 the definition of complete informa-
tion and note that – because of the non-invertible action of the nuisances – it must
now depend21 on the scene ξ . Specifically, given a collection of images {I}, I call

19 Two-dimensional signals do not obey the “causality principle” of one-dimensional scale-
space, whereby structure cannot be created with increasing scale [51].

20 Want to remove the effect of an occlusion? Move around it. Want to resolve the fine-
structure of a texture, removing the effects of quantization? Move closer.

21 Actionable information also depends on the scene ξ , but only through the image I =
f (ξ ,ν). Complete information, on the other hand, depends on the scene in ways that are
independent of the measured image I.
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a representation any statistic from which the given data can be generated, up to a
residual noise that is statistically simple (homoscedastic, isotropic and temporally
white). Of all such statistics, we want to consider, again, the smallest, φ∨ξ ({I}). As
more and more images are gathered, the set of representations that are compatible
with (i.e., that can generate) them becomes smaller. In the limit, when one consid-
ers the entire light field, that is the set of all possible images that the given scene
ξ can generate (that also relates to the so-called Plenoptic Function), the resulting
representation is called complete:

H(φ∨ξ (I))≥ H(φ∨ξ (I)|I(x,0))≥ H(φ∨ξ (I)|I(x,0), I(x,1))≥ . . .

. . .≥ H(φ∨ξ (I)|{I(x, t)}∞t=0) = 0. (7)

We can then call the complete information the complexity of a complete
representation:

I .
= H(φ∨({I})).

Note that, although it may seem impossible or irrelevant to attempt to capture the
complexity of the light field, there are indeed computational approaches to measure
it [24]. However, in practice the complete information can be unbounded. In either
case, unless the nuisances are invertible, it is different from the Actionable Infor-
mation, so we can define their difference as the Actionable Information Gap (AIG):

G(I) .
= I −H(I). (8)

The process of Information Pickup, therefore, is one of reducing the AIG. In gen-
eral, this process may be asymptotic, although in some cases (i.e., for some tasks)
sufficient exploration may be accomplished in finite time [62]. Note that, in the pres-
ence of occlusion and quantization, the gap can only be reduced by moving within
the environment. In order to move, however, the agent must be able to compute the
effects of its motion on the AIG, ideally without having to know the complete infor-
mation I, even if the data {I} or the statistics φ∨({I}) were available from memory
of previous explorations.

To this end, we must be able to quantify the “gain” that comes from taking
additional measurements in response to a control action. This is the process of visual
exploration, which we describe in the next subsection.

It is clear that occlusions play a critical role in the process: As we move in any
non-trivial environment, portions of the scene that were previously occluded be-
come visible, and the Actionable Information computed on the subset of the image
that has become unoccluded constitutes one portion of the “Actionable Information
Increment.” Therefore, occlusion detection is central to visual exploration. We refer
the reader to [5] for a description of a method for occlusion detection that is based
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on the convex relaxation of a variational optimization problem, that admits a global
solution with respect to both the motion field w and the occluded domain Ω .22

4.4 Information Pickup

To study the process of “Information Pickup” by means of closing the Actionable
Information Gap, I specify a simple model of an “agent,” that is a Euclidean ref-
erence frame in physical space, i.e. a viewpoint g(t)∈ SE(3), moving under the ac-
tion of a control, which I assume can specify the instantaneous velocity u(t) ∈ R

6.
This kinematic model neglects masses, inertias and other dynamic fancy. The agent
simply moves by integrating its velocity, i.e. the ordinary differential equation
ġ(t) = û(t)g(t) starting from some initial position, which for convenience I assume
to be the origin g(0) = e.23 The agent measures an image at each instant of time,
I(x, t): {

ġ(t) = û(t)g(t) g(0) = e

I(x, t) = f (ρ(x),S(x);g(t),h(t),n(x, t)) .
(9)

We call a system constrained by the dynamical model above, aiming to minimize
the AIG, an explorer. A myopic explorer would simply try to maximize, at each
instant of time, the Actionable Information Increment (AIN):

û(t) = argmax
u
H(I(x, t)|I(x, t− 1)) subject to (9) (10)

where the function being minimized can be computed once occlusions are detected
as described in the previous subsection. In addition to being myopic, such an ex-
plorer would be memoryless, so it would continue exploring portions of the scene it
has seen in the past, just not the immediate past. To remedy that, one could design
an explorer with memory, by maximizing instead H(I(x, t)|{I(x,τ)}t−1

τ=0). Clearly,
such an explorer would be difficult to maintain as its memory grows unbounded.
Therefore, one could condition, rather than on the past history, {I(x,τ)}t−1

τ=0, on a

statistic, call it ξ̂ (t), that is inferred incrementally as the minimal sufficient statistic
of the past history that can generate the history up to a statistically simple residual.
But this is precisely what we defined as a representation earlier, only that it is not
complete for any finite time t <∞. Instead, we can construct ξ̂ (t) in such a way that
it will converge to a complete representation, by minimizing

22 A simple approximate solution can be found by block matching followed by run-length
encoding of the residual, as customary in MPEG. Efficient algorithms, including hardware
implementations, are readily available for this task. The shortcoming of this approach is
that, in general, it yields a loss of actionable information, whereas the optimal solution
guarantees, at least in theory, that no actionable information is lost.

23 Here û indicates the operator that transforms a linear and angular velocity vector u into a
twist û ∈ se(3) [53].
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ξ̂ (t + 1) = argminH(I(x, t +1)|ξ̂(t)) (11)

in conjunction with the maximization of the Actionable Information Increment with
respect to the control action

û(t) = argmax
u
H(I(x, t)|ξ̂ (t)) subject to (9). (12)

The process could be initialized with ξ̂ (0) = {π0, I(x,0)}, where π0 is the surface
corresponding to the image plane, and I(x,0) is the first measured image. In other
words, initially the representation is simply an image (or its maximal invariant)
attached to a plane. Note that a representation is a subtle object, because it is a
function of the images (it is a statistic) but it lives in the embedding space of the
space of scenes (so it can be thought of as a scene); it can be used to generate images,
and these images can be compared with those generated by the actual (“true”) scene.
We will never be able, however, to determine whether the representation is close to
the “true scene.” What we can do is to determine whether the images generated
by the representation (or their maximal invariants) are close to images generated
by the actual scene. This is convenient because it avoid philosophical as well as
computational entanglements, because we do not need to put a measure in the space
of scenes, which is a notoriously hairy thing to do.

A more sophisticated (non-myopic) explorer would try to plan its control based
on a receding horizon of (possibly infinite) length T ,

û(t) = argsup
u(·)
H({I(x,τ)}T

τ=t |ξ (t),u) subject to (9). (13)

This would achieve exploration more efficiently than a myopic strategy, although
if efficiency is not a priority, a random walk (say the Roomba vacuum cleaner)
will eventually explore the unknown space (see Sect. 6). The process is depicted in
Fig. 4.
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Fig. 4 For a given task, represented by a risk functional R, and for a given nuisance ν ,
one can in general compute invariant statistics. Their value is determined by the information
gap: When it reaches zero, the invariant is also sufficient for the task. When it is larger,
control authority can be exercised to minimize it; thence the invariant/insensitive feature is
also sufficient (dashed line).
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Remark 1 (The Actionable Information Paradox). Consider the task of recogniz-
ing an object that can exhibit significant reflectance variability, such as chameleon,
or a passenger vehicle on the road. What determines the identity of the object is
its three-dimensional shape. Naturally one wants a representation of shape that is
viewpoint-invariant. But viewpoint cannot be “undone” from an image alone, so
one would have to store the entire image and defer dealing with viewpoint as part of
the matching process. If, however, one moves relative to the object of interest, then
three-dimensional shape is observable, and one can infer, and store, a 3D model of
the geometry of the object, and discard photometry (reflectance and illumination),
thus effectively reducing the storage requirement to little more than the size of a
single image (assuming piecewise smooth surfaces). This yields the apparent para-
dox whereby more data yield a smaller storage requirement. It also means that, in
order to “extract information” we have to “throw away some of the data,” which
has epistemological implications discussed in Sect. 7.

5 Representational Structures

I now describe the computation of Actionable Information and the representation it
dictates.

5.1 Computing Actionable Information

For each image, we first compute a viewpoint-contrast invariant as follows: First, we
perform (over-) segmentation at all possible scales: Starting from a 5-dimensional
vector of color channels and positions, I use Quick Shift [79] to construct in one
shot the tree of all possible segmentations (Fig. 6 top). I then consider the finest par-
tition (a.k.a. “superpixels”) to be the elementary unit, and construct the adjacency
graph, then aggregate nodes based on the histogram of vector-quantized intensity
levels and gradient directions in a region ω of 8×8 pixels and arrive at the texture
adjacency graph (TAG) (Fig. 7 top-right). Two-dimensional regions with homo-
geneous texture (or color) are represented as nodes in the TAG. I then represent
one-dimensional boundaries between texture regions as edges in the TAG, or equiv-
alently pairs of nodes (Fig. 6 top-right and Fig. 7 bottom-left). Ridges sometimes
appear as boundaries between textured regions, or as elongated superpixels. Finally,
I represent zero-dimensional structures, such as junctions or blobs (Fig. 6 bottom),
as faces of the TAG, or equivalently pairs of edges (Fig. 7 bottom). This structure
is the Representational Graph,R, whose run-length encoding measures Actionable
Information. In particular,H(I) is computed by summing, over the number of nodes
N(s) of the representational graph over all stored scales s, the coding length of the
texture histograms associated to each node, but not the shape or size of the regions
ωi; the strength associated to each edge, corresponding to the probability of detec-
tion of an edge and ridge detector and the proximity to a superpixel boundary, but
not the shape or length of the boundary, using our implementation of [51] (Fig. 6
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top-right); the presence of an attributed point region associated to a face and its
descriptor, but not the position of the point. I use a SIFT detector for Difference-of-
Gaussian blobs from VLfeat (http://www.vlfeat.org), and Harris-Affine from [56]
(Fig. 6 bottom-right and bottom-left respectively). Although in theory we should
also store, for each of these regions, the ART [72], in practice, in the experiments
reported in Sect. 6, I forgo this step.

This construction is conceptual; in practice, all that matters during the exploration
phase is that the information gap is being closed, possibly in an efficient manner.

5.2 Closing the Actionable Information Gap

To compute a representation one can start with a planar surface where the first im-
age is supported, and compute the representational structure for that image. From
the second image onward, one can compute occlusions relative to the representa-
tion (note that the representation can be thought of as a scene), and add nodes and
edges to the representational graph depending on what structures were revealed by
the new image. This process is conceptually equivalent of performing on-line causal
reconstruction of shape and reflectance [40]. However, rather than dense Euclidean
geometry and albedo, we only store a multi-scale discrete representation capturing
the topology of the space as well as a contrast-invariant local descriptor of the albedo
[42].

In order to compute the AIG, the complete information is necessary. This is, in
general, not available unless one has had the opportunity to inspect the environment
beforehand, and has, for instance, the entire light-field stored in memory. The pro-
cess of Information Pickup hinges on the hypothesis that, by integrating the AIN,
one would eventually converge to complete information, hence rendering the AIG
equal to zero. In the next section I validate this assumption empirically.

An explorer capable of making the AIG (asymptotically) zero could be called
an omnipotent explorer. In practice, any controller will have some limitations, and
therefore one can expect that there would be a tradeoff between the control authority
of the explorer (to be properly defined) and the limit of the AIG. This is discussed
in [70].

6 Empirical Consequences of the Definitions

In this section I test our hypothesis that an agent guided by Gibson would seek
to “go around occlusions” and “resolve textures,” whereas one guided by Shannon
would be unaware of the topological structure of the environment, despite using the
same data.

In the first indoor experiment (Fig. 8), a simulated robot is given limited con-
trol authority u = [uX , uY , 0, 0, 0, 0]T to translate on a plane inside a (real)
room, while capturing (real) color images with fixed heading and a field-of-view
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of 90o. The robot is capable of computing both Entropy and the AIN at the current
position as well as at immediately neighboring ones. Under these conditions, the
agent reduces to a point (the vantage point) g = (Id,T ) where T = [TX ,Ty,0]T . I
indicate the vantage point with X = [TX ,TY ]

T , consistent with the nomenclature in-
troduced in Sect. 3.1, and the control with V = [uX , uY ]

T .
In the second outdoor experiment (Fig. 11), the robot is Google’s StretView car,24

over which we have no independent control authority. Instead, I assume that it has
an intelligent (Gibsonian) driver aboard, who has selected a path close to the opti-
mal one. The robot measures omnidirectional panoramas at each instant of time, so
the data is symmetric with respect to forward or backward traversal. In this case,
we cannot test independent control strategies. Nevertheless, we can still test the hy-
pothesis that traditional information, computed throughout the sequence, bears no
relation to the structure of the environment, unlike actionable information, and in
particular the AIN. For the purpose of validation, I have used standard tools from
multiple-view geometry [53] to reconstruct the trajectory of the vehicle and its rela-
tion with the 3D structure of the environment25 (Fig. 12).

Fig. 5 The same point on an image can be represented, depending on scale, as “structure”
(extrema and discontinuities, such as edges and ridges), then “texture” (spatially stationary,
or cyclo-stationary, statistics), then again structure (green), and again texture (red) etc. All
interpretations must be retained in the representation, rather than selecting one particular
scale. One-dimensional signals obey a “causality principle” whereby structure can only be
lost, but not created, with increasing scale [51]. This is not the case with two-dimensional
images.

6.1 Exploration via Information Pickup

The “ground truth” Entropy Map (Fig. 8 top) and Complete Information Map (Fig. 8
middle) are computed from (real) images collected with a fixed-heading camera with
90o field-of-view regularly sampled on a 20cm grid and up-sampled/interpolated to
a 40×110 mesh (sample views are shown in Fig. 8 overlaid on the map of the room).
Complete Information is computed as a sufficient statistic of the light field, that is

24 Data courtesy of Google, INC.
25 Courtesy of T. Lee. A poor man’s version of this experiment would use Google’s pseudo-

ground truth for the trajectory, and trust Google Earth to portray images suggestive of the
three-dimensional structure of the environment.
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Fig. 6 Representational structures: Superpixel tree (top), dimension-two structures
(color/texture regions), dimension-one structures (edges, ridges), dimension-zero structures
(Harris junctions, Difference-of-Gaussian blobs). Structures are computed at all scales, and
a representative subset of (multiple) scales are selected based on the local extrema of their
respective detector operators (scale is color-coded in the top figure, red=coarse, blue=fine).
Only a fraction of the structures detected are visualized, for clarity purposes. All structures
are supported on the Representational Graph, described in the next figure.

as the actionable information of each image computed at each position in space.
The traversable space here is restricted to the inside of the room, so the explorer is
not allowed to go outside; however, openings due to doors and windows extend the
universe to the adjacent rooms and the vegetation outside the window.
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Fig. 7 Representational Graph: (detail, top-left) Texture Adjacency Graph (TAG, top-
right); nodes encode (two-dimensional) region statistics (vector-quantized filter-response
histograms, or the ART of chromaticity within the region); pairs of nodes, represented by
graph edges, encode the likelihood computed by a multi-scale (one-dimensional) edge/ridge
detector between two regions; pairs of edges and their closure ( graph faces) represent (zero-
dimensional) attributed points (junctions, blobs). For visualization purposes, the nodes are
located at the centroid of the regions, and as a result the attributed point corresponding to a
face may actually lie outside the face as visualized in the figure. This bears no consequence,
as geometric information such as the location of point features is discounted in a viewpoint-
invariant statistic.

The first agent considered is a Brownian Explorer, that follows a random walk
governed by the stochastic differential equation (SDE){

dX(t) =V (t)dt; X(0)∼ U(S ⊂ R
2);V (0) = 0

dV (t) = dW (t) a Wiener Process w/ cov. σ2 (14)
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Fig. 8 Entropy vs. Actionable Information (first and second from the top) displayed as a
function of position for a mobile agent with constant heading and 90o field-of-view (bright
= high; dark = low). Entropy relates to the structure of the image, without regard to the
three-dimensional structure of the environment: It is high in the presence of complex textures
(wallpaper and wood wainscoting) in the near field as well as complex scenes in the distance.
Actionable Information, on the other hand, discounts periodic and stochastic textures, and
prefers apertures (doors and windows), as well as specular highlights. Note the region on the
right-hand side shows high levels of Actionable Information, proportional to the percentage
of the field of view that intercepts the door aperture. Four representative images have been
selected, corresponding to a field of view indicated by a colored cone (yellow, green, orange,
and blue). Their coding residual is shown below. Note that, except for specular reflections, the
complex wallpaper and wood grain does not trigger a high residual, but the opening behind
the windows (yellow and blue viewing cone) does. The representational structures computed
for every image collected (an approximation of the light field) constitutes the Complete In-
formation, that is not available to the explorer beforehand.

to be integrated in the Îto sense.26 In practice, we can make do with the discrete-time
stochastic process generated by{

X(t + dt) = X(t)+V(t)dt; X(0)∼ U(S ⊂ R
2)

V (t +dt) =V (t)+W(t)dt; W (t)
iid∼N (0,σ2I)

(15)

26 See [46] (p. 6) for a definition and characterization of a Wiener process, and [44] (Chapt.
2 and 5, in particular eq. (2.1) and the rest of Ch. 5.2) for the meaning of the SDE.
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Fig. 9 Brownian (top), Shannonian (left) and Gibsonian (right) Information Pickup. Repre-
sentative samples of exploration runs are shown. The Shannonian Explorer (left column) is
attracted by wallpaper (top edge of each plot) and the foliage outside the window (bottom-left
corner of each plot). The Gibsonian Explorer (right column), aims for the window (bottom-
left corner of the room) or the door (top-right corner of the room) like a trapped fly, and is
similarly repelled by the control law that prohibits escape.

with V (0) = 0. The trajectory charted by the Brownian Explorer (e.g., the Roomba
vacuum cleaner) is shown in Fig. 9 (top).27 Clearly, one can do better with vision.
For the Shannonian Explorer I consider directly the discrete-time model, with a
temporal evolution of the entropy H(I(x, t)|g(t) = X) of the image I captured at
time t in position X . The Gibsonian Explorer seeks to maximize the AIN my-
opically, as described in the previous section. Representative sample trajectories
of the Shannonian and Gibsonian explorations are shown in Fig. 9 (left and right
column respectively). The Shannonian Explorer loves wallpaper, complex texture
and generally operates regardless of the 3D structure of the scene. The Gibsonian
Explorer is claustrophobic: It prefers apertures and attempts to go through win-
dows and doors; the simulation does not allow that, hence it behaves like a fly on
glass windows. Note that the Gibsonian explorer is not given the complete infor-
mation, and can therefore only plan its action based on the AIN. The goal of this

27 The behavior of our naïf Brownian explorer around the boundaries (Fig. 9) is dictated by
a simplified reflection processes: We just invert the component of velocity that causes the
crossing of the boundary. A proper simulation would instead use shadow paths following
the Reflection Principle as described in [44] (Sect. 2.6.A, p. 79).
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experiment is to show that local control strategies, based on image computations,
yield space exploration that is compatible with the complete information, that is
considered ground truth. In Fig. 10 I experimented with the dilemma between com-
plexity due to near-field texture versus far-away structure, two situations indistin-
guishable from an image alone. In the ecological approach to perception, however,
accommodation is actively controlled, so one can discriminate between complexity
due to nearby texture (near-field focus), or to far-away structure (far-field focus).

Fig. 10 Effects of Accommodation: The same scene (top, detail at the bottom) viewed from
similar vantage points while focusing in the near (left) and far field (right). Entropy is virtually
identical (right is 4% lower, 7.3414nats vs. 7.0451nats), but the complexity on the left is due
to the foreground texture, whereas on the right it is due to the structure of the background.
Coding length is different, which reflects the self-similarity of the foreground texture (right
is 47% higher, 94,375Bytes vs. 138,638Bytes). Actionable Information captures this fact as
well (right is 52% higher, 10,939bits vs 16,608bits.) If accommodation is actively controlled,
one can easily distinguish nearby texture from far away structure from the feedback signal of
the accommodation control.
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Fig. 11 Google StreetView Dataset. Linear panorama, 2,560× 905 pixels RGB. Entropy
(left) and Entropy gradient along the path is shown color-coded at the bottom throughout the
12,000 frame-long sequence. Neither bear any relation to the geometry of the scene.

It is unsurprising, and patent in Fig. 11, that neither Entropy nor its gradient bear
any relation to the structure of the scene. In Fig. 12, I show the top view of a 250
frame-long detail with the trajectory and point-wise structure computed from point
correspondences using standard tools from multiple-view geometry. For compari-
son, I also show the pseudo-ground truth provided with the dataset (yellow push-
pins). The color-coded trajectory on the bottom shows the entropy gradient, with
enhanced color-coding (red is high, blue is low). On the top I show the same for the
Actionable Information Gap. It shows peaks at turns and intersections, when large
swaths of the scene suddenly become visible. Note that the peaks are both before
and after the intersection, as the omni-directional viewing geometry makes the se-
quence symmetric with respect to forward and backward directions. For the same
reason, there is a constant “creation/distruction of data” in the direction of motion
due to quantization. The “ground truth” coordinates are rather imprecise, as they
would have the vehicle crossing lanes into opposing traffic and into buildings.

Trees, and vegetation in general, attract both the Shannonian and the Gibsonian
explorers, as they are photometrically complex, but also geometrically complex be-
cause of the fine-scale occlusion structure, visible in the last part of the sequence
(right-hand side of the plot; images are shown in Fig. 11). Similar considerations
hold for highly specular objects such as cars and glass windows. Although this ex-
periment does not entail active exploration, but only passive motion, it shows that the
AIN strongly relates to the structure of the scene, and in particular to its topology.
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Fig. 12 Navigation via Minimization of the Actionable Information Gap. Actionable In-
formation gap (top) vs. Data Entropy gradient (bottom) color-coded (blue=small, red=large)
for a 250-frame long detail of the Google Street View dataset, overlaid with the top-view
of the point-wise 3D reconstruction computed using standard multiple-view geometry. For
reference, the top-view from Google Earth is shown, together with push-pins corresponding
to “ground truth” coordinates. The Entropy gradient (bottom) shows no relation with the 3D
structure of the scene. Actionable Information (top), on the other hand, has peaks at turns and
intersections, when large portions of the scene become visible (getting into the intersection)
and thence disappear (getting out of the intersection).

7 Summary and Discussion

I have presented a characterization of visual information for the purpose of deci-
sion and control tasks. Actionable Information is defined as the complexity of the
maximal statistic that is invariant to the nuisances. Specifically, I have considered
viewpoint and illumination variations, which have been recently shown to admit in-
variant sufficient statistics. In addition, I have considered occlusion and quantization
artifacts, that cannot be inverted, and therefore induce an “information gap” that can
be filled by controlling the data acquisition process.

While in traditional Communications Theory “all data matters,” in the context of
Actionable Information at least a portion of the data is irrelevant, and the process
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of “extracting information from data” requires a control action. This tie between
sensing and control is very prominent in Actionable Information.

I have illustrated these ideas on a simulated exploration task, guided by visual
measurements. Whereas a Shannonian Explorer is guided by the complexity of the
data, a Gibsonian Explorer is guided by the topology of the physical space sur-
rounding it. In both cases, the data consists of images, and no 3D reconstruction,
stereo or structure-from-motion is necessary.

This work relates to visual navigation and robotic localization and planning [74,
10, 37]. In particular, [81, 13, 71] propose “information-based” strategies, although
by “information” they mean localization and mapping uncertainty based on range
data. Range data are not subject to illumination and viewpoint nuisances, which are
suppressed by the active sensing, i.e. by flooding the space with a known probing
signal (e.g. laser light or radio waves) and measuring the return. There is a signifi-
cant literature on vision-based navigation [14, 84, 58, 60, 73, 66, 28, 25, 64, 43], and
our experimental section could be characterized simply as occlusion-driven naviga-
tion [47, 48, 9]. In most of the literature, stereo or motion are exploited to provide
a three-dimensional map of the environment, which is then handed off to a path
planner, separating the photometric from the geometric and topological aspect of
the problem. Not only is this separation unnecessary, it is also ill-advised, as the
regions that are most informative are precisely those where stereo provides no dis-
parity. Our navigation experiments also relate to Saliency and Visual Attention [38],
although there the focus is on navigating the image, whereas we are interested in
navigating the scene, based on image data. In a nutshell, robotic navigation liter-
ature is “all scene and no image,” the visual attention literature is “all image, and
no scene.” I bridge the gap by proposing an approach that allows to go “from im-
age to scene, and vice-versa” in the process of Information Pickup. The relationship
between visual incentives and spatial exploration has been a subject of interest in
psychology for a while [17].

This is not a paper on visual recognition, although it does propose a represen-
tation (the Representational Graph) that integrates structures of various dimensions
into a unified representation that can, in principle, be exploited for recognition. In
this sense, it presents an alternative to [35, 76], that could also be used to compute
Actionable Information. However, the rendition of the “primal sketch” [54] in [35]
does not guarantee that the construction is “lossless” with respect to any particular
task, because there is no underlying task guiding the construction. Our work also re-
lates to the vast literature on segmentation, particularly texture-structure transitions
[83]. Alternative approaches to this task could be specified in terms of sparse coding
[59] and non-local filtering [15]. I stress the fact that, while no single segmentation
is “right” or “wrong,” the collection of all possible segmentations, with respect to all
possible statistics pooled at all possible scales, is “useful” in the sense of providing
pre-computation of the optimization or marginalization functional implicit in any
recognition task. This paper also relates to the literature of ocular motion, and in par-
ticular saccadic motion. The human eye has non-uniform resolution, which affects
motion strategies in ways that are not tailored to engineering systems with uniform
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resolution. One could design systems with non-uniform resolution, but mimicking
the human visual system is not our goal.

Our work also relates to other attempts to formalize “information” including the
so-called Epitome [41], that could be used as an alternative to our Representational
Structure if one could compute it fast enough. Furthermore, the Epitome does not
capture compactness and locality, that are importantly related to the structure of
the scene (occlusions) and its affordances (relationship to the viewer). For instance,
if one has same texture patch in different locations in space, these are lumped to-
gether, regardless of compactness. Another alternative is the concept of Information
Bottleneck, [75], and our approach can be understood as a special case tailored to
the statistics and invariance classes of interest, that are task-specific, sensor-specific,
and control authority-specific. These ideas can be seen as seeds of a theory of “Con-
trolled Sensing” that generalizes Active Vision to different modalities whereby the
purpose of the control is to counteract the effect of nuisances. This is different than
Active Sensing, that usually entails broadcasting a known or structured probing sig-
nal into the environment. Our work also relates to attempts to define a notion of
information in statistics [52, 11], economics [55, 4] and in other areas of image
analysis [45] and signal processing [33]. Our particular approach to defining the un-
derlying representational structure relates to the work of Guillemin and Golubitsky
[32]. Our work also relates to video coding/compression: As I have pointed out,
poor man’s versions of some of our constructions could be computed using standard
operations from the video coding standards. However, I advocated structures that
are adapted to the image data (superpixels, TAG, representational graph) rather than
on fixed blocks. We can do this because, to achieve invariance to viewpoint, we have
no need to encode deformation of these regions, just their correspondence.

Last, but not least, our work relates to Active Vision [1, 12, 8], and to the “value
of information” [55, 27, 34, 22, 20]. The specific illustration of the experiment to the
sub-literature on next-best-view selection [61, 9]. Although this area was popular in
the eighties and nineties, it has so far not yielded usable notions of information that
can be transposed to other visual inference problems, such as recognition and 3D
reconstruction.

Similarly to previously cited work [81, 13], [26] propose using the decrease of
uncertainty as a criterion to select camera parameters, and [3] uses information-
theoretic notions to evaluate the “informative content” of laser range measurements
depending on their viewpoint.

Clearly, one can raise a number of objections to the concepts defined here, both
on mathematical and on philosophical grounds. For start, if we define occlusion as
a nuisance, then a sufficient statistic can never be known until we explore the entire
world and beyond, for we cannot know what is “on the other side of the hill28".
However, the sufficient statistics are defined by the task, and if the task is naviga-
tion, then a sufficient statistic is aggregated until all openings in a space have been

28 Occlusions have long fascinated humans both for practical reasons (e.g. the Duke of
Wellington’s quote “All the business of war, and indeed all the business of life, is to en-
deavor to find out what you don’t know by what you do; that’s what I called ’guessing what
was on the other side of the hill’.”) and for aesthetic ones (e.g. Leopardi’s “L’Infinito”).
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explored. If the task is recognition of a particular object or class, partial occlusions
can be resolved, and total occlusions (i.e. the absence of the object of interest in the
visual field) requires active search to resolve, and will not end until the object is
found. Also, the invariant sufficient statistic described in [72] assume that the im-
age is a Morse function. While Morse functions are dense in C2(R2 → R), which
is dense in L

2, and therefore they can approximate any square-integrable function
arbitrarily well, co-dimension one extrema (edges, ridges, valleys) are qualitatively
different than elongated blobs. Nevertheless, one could extend the analysis to (multi-
scale) edge and ridge detectors, for instance following the guidelines of [50, 18], and
still have a thin set that encodes all the actionable information. This extension is the
subject of future work.
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Abstract. Algorithms to rapidly search massive image or video collections are crit-
ical for many vision applications, including visual search, content-based retrieval,
and non-parametric models for object recognition. Recent work shows that learned
binary projections are a powerful way to index large collections according to their
content. The basic idea is to formulate the projections so as to approximately pre-
serve a given similarity function of interest. Having done so, one can then search the
data efficiently using hash tables, or by exploring the Hamming ball volume around
a novel query. Both enable sub-linear time retrieval with respect to the database size.
Further, depending on the design of the projections, in some cases it is possible to
bound the number of database examples that must be searched in order to achieve a
given level of accuracy.

This chapter overviews data structures for fast search with binary codes, and then
describes several supervised and unsupervised strategies for generating the codes.
In particular, we review supervised methods that integrate metric learning, boost-
ing, and neural networks into the hash key construction, and unsupervised methods
based on spectral analysis or kernelized random projections that compute affinity-
preserving binary codes. Whether learning from explicit semantic supervision or ex-
ploiting the structure among unlabeled data, these methods make scalable retrieval
possible for a variety of robust visual similarity measures. We focus on defining the
algorithms, and illustrate the main points with results using millions of images.
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1 Introduction

Huge collections of images and video are increasingly available, arising in domains
as diverse as community photo collections, scientific image data of varying modal-
ities, news media, consumer catalogs, or surveillance archives. In the last decade
in particular, user-generated content is widely stored and shared on the Web. Num-
bering in to the tens or hundreds of billions, their sheer size poses a challenge for
conventional computer vision techniques. For example, every minute more than 20
hours of new video are uploaded to YouTube and 100,000 photos are uploaded to
Facebook. Clearly, even real-time methods would be incapable of coping with this
deluge of data. Consequently, researchers are exploring new representations and ap-
proaches to search large-scale datasets.

At the core of visual search is the nearest neighbor problem: given a query, which
items in the database are most like it? Despite the simplicity of this problem state-
ment, fast and accurate nearest neighbor search can enable a spectrum of important
applications (see Figure 1).

Efficient algorithms to address the basic similarity search task have received
much attention over the years, yielding a variety of tree-based and hashing-based
algorithms [22, 9, 66, 44, 47]. However, while applicable to visual data in cer-
tain cases, traditional methods often fall short of technical demands inherent to our
setting:

• High-dimensional data. First of all, good descriptors for images or videos typ-
ically live in a high-dimensional space, easily numbering thousands or more di-
mensions. At the same time, the volume of data quickly strains memory, and
disk access is slow. Both aspects argue for mapping to a more compact represen-
tation, and/or developing approximate search methods whose error and storage
requirements do not blow up with the input dimensionality.

• Structured input spaces and specialized similarity functions. Secondly, visual
data need not fit neatly within a vector space representation at all. More sophisti-
cated descriptors built on graphs, sets, or trees are often appealing, as they more
more closely model the real structure at hand. For example, an image might be
described by a planar graph over its component regions, or a video clip may be
encoded as a set of loosely ordered keyframes. Alongside such structured rep-
resentations, researchers have developed specialized affinity or kernel functions
to accommodate them that are accurate, but would be prohibitively costly to ap-
ply naively in the search setting. Thus, there is a clear need for flexibility in the
similarity measures supported.

• Availability of external supervision. Finally, the complex relationships intrin-
sic to visual data can be difficult to capture with manually-defined features and
metrics. There is a well-known gap between the low-level cues one might pull
from an image or video, and the high-level semantics one would like preserved
in a content-based search. Access to external knowledge—in the form of labeled
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Fig. 1 Large-scale visual search underlies many interesting applications. Figure credits:
Product search image is courtesy of Yeh et al. [75], CBIR image is courtesy of Iqbal and
Aggarwal [35], near duplicate detection image is courtesy of Xu et al. [74], and visual link
image is from kooaba.com.

instances or target similarity constraints—would ideally inform the comparisons.
This suggests learning should somehow be integrated into the indexing approach
or representation.

The central theme of this chapter is the construction and use of binary representa-
tions for visual search, as a means to address the above requirements. The main idea
is to compute binary projections such that a given similarity function of interest is
approximately preserved in Hamming space. Having done so, one can then search
the data efficiently using hash tables, or by exploring the Hamming ball volume
around a novel query. Depending on the design of the projections, guarantees on the
relative retrieval cost and error are sometimes possible.

Why do we explicitly target binary representations? Not only do they fit well with
hashing and Hamming-ball search strategies, but also we will see that by carefully
maximizing the information carried by each bit, we can achieve far more compact
representations for a given storage budget than using real-valued descriptors (which
effectively use groups of bits, i.e., 32 for a single-precision real). Clearly, when the
datasets are O(1011) in size, minimizing the storage overhead is vital, as discussed
above.
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The algorithms for learned binary projections that we discuss have important
ties and contrasts to previous work in dimensionality reduction and distance learn-
ing. Dimensionality reduction is a classic problem in machine learning, but the va-
riety of existing techniques are not necessarily well-suited to this domain. Many
approaches (such as Isomap [64], LLE [55], or t-SNE [67]) do not scale to large
datasets since their complexity is quadratic (or worse) in the number of data points.
Furthermore, with large datasets, the ability to project new instances is vital, since
it allows parallelization and asynchronous processing of the data. Yet many classic
approaches [64, 55, 67] lack an explicit mapping function to the low-dimensional
space, making “out-of-sample" projections problematic. In contrast, the techniques
we describe have an explicit mapping to the low-dimensional space, allowing the
binary representation to be quickly computed.

Effective retrieval requires a representation that places images of semantically
similar content close and dissimilar content far apart. Traditional approaches from
content-based image retrieval (CBIR) rely on simple representations—for example,
using color or edge histograms (see [18] for a review of such methods). However,
significant improvements over these representations have proven difficult to achieve
through hand-crafting alone. Recent efforts have therefore focused on learning good
representations using labeled training data (see text below for references). In prac-
tice, this can be viewed as a supervised form of dimensionality reduction or distance
learning. The work we describe fits into this area, but with a focus on deriving tech-
niques that produce binary embeddings instead of real-valued ones.

In the following section, we first briefly review primary data structures for fast
search with binary codes. Having established the search protocols, we then devote
the majority of the text to explaining several strategies to generate binary codes. We
organize them roughly around the degree of supervision assumed: in Section 3 we
describe supervised methods that integrate metric learning, boosting, or neural net-
works into the hash key construction, and in Section 4 we describe unsupervised
methods that use spectral analysis or kernelized random projections to compute
affinity-preserving binary codes. While the former exploit explicit supervision from
annotated training data, the latter exploit the structure among a sample of unlabeled
data to learn appropriate embeddings. We include some example empirical results
to illustrate key points.

We refer the reader to the original publications that introduced the algorithms for
more details, particularly [37, 40, 57, 60, 72, 39]. While we present the methods
in the context of visual retrieval tasks, in fact the core methods are not specific to
images in any way, and could be applied to search other forms of data as well.

2 Search Algorithms for Binary Codes

The majority of this chapter is devoted to the construction of compact binary codes,
either using label information (Section 3) or just by mimicking the neighborhood
structure of the original input space (Section 4). However, mindful of our overall
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Dataset LabelMe Web
# datapoints 2× 104 1.29× 107

Gist vector dim. 512 384

Method Time (s) Time (s)
Spill tree - Gist vector 1.05 -

Brute force - Gist vector 0.38 -
Brute force - 30 bit binary 4.3× 10− 4 0.146

” - 30 bit binary, M/T 2.7× 10− 4 0.074
Brute force - 256 bit binary 1.4× 10− 3 0.75

” - 256 bit binary, M/T 4.7× 10− 4 0.23
Sem. Hashing - 30 bit binary 6× 10− 6 6× 10− 6

Fig. 2 Performance of brute-force exhaustive search and Semantic Hashing [56] on two
datasets: LabelMe (20,000 images, 512 dimensional Gist input) and Tiny Images (12.9 mil-
lion, 384 dimensions). The timings for a single query are shown, using a range of different
approaches. A spill tree (kd-tree variant) [44] is worse than linear search due to the high di-
mensionality of the input. Reducing the Gist descriptors to binary codes (30-bit and 256-bits)
makes linear search very fast (< 1ms/query) on small datasets, but only moderately quick for
the larger Tiny Images (< 1s/query). Linear search is easily parallelized (e.g., by using mul-
tiple CPU cores—see entries labeled M/T). Semantic hashing is extremely quick (< 1μs),
regardless of dataset size, but can only be applied to compact codes. In contrast, the query
time for linear search simply scales linearly with the code length (and database size).

goal, we now explain how these binary codes can be used to perform the nearest-
neighbor search.

In general for large-scale retrieval, the most important property is that the search
time complexity be sub-linear in the number of database examples. Additionally,
given the distributed nature of large-scale computing, the ability to parallelize the
search is important for practical applications. In the particular context of binary
codes, as we consider here, retrieval involves finding all examples that have a zero
or small Hamming distance from the query, where the Hamming distance between
two binary vectors is the number of bits that differ between them.

To satisfy these requirements, we consider variants of hashing. Hashing is quick
and has minimal storage requirements beyond the binary data vectors themselves. It
uses all dimensions of the binary codes (bits) in parallel to perform retrieval. This is
in contrast to tree-based algorithms such as kd-trees, where each example is found
by making a series of binary decision to traverse the tree, each decision (bit) being
conditional on the choices above.

2.1 Linear Scan in Hamming Space

The most straightforward solution is a brute-force linear scan—that is, to compute
the Hamming distance between the query vector and every vector in the database.
Although this scales linearly with the size of the database, the constant is typically
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Fig. 3 Semantic Hashing [57] treats the query vector as an address in memory. A Hamming
ball is explored by perturbing bits within the query. Nearby points will thus be found by direct
memory look-up.

very small, and thus it can be practical for surprisingly large datasets. It is also worth
noting that the memory overhead for this approach is virtually nil.

Computing the Hamming distance between two vectors requires two steps: (i)
compute the XOR and (ii) count the number of 1’s in the resulting vector. Both
operations can be performed extremely quickly on modern CPUs, with parallel XOR
operations being part of the SSE instruction set. The parallelism can also be trivially
extended at the machine level, with each server in a cluster searching a different sub-
set of the database.

In Figure 2 we show timings for brute-force evaluation using 30- and 256-bit
codes on two datasets, one of 20,000 vectors, the other 12.7 million. For the 30-bit
codes, a 2.0Ghz CPU is able to compare 50 million pairs per second, while for 256-
bit codes this increases to 120 million per second. Thus, the brute-force approach
scales gracefully to longer code lengths, as we would expect. Figure 2 also shows the
use of two cores instead of one nearly doubles the speed, confirming that it is easy
parallelized. These results demonstrate that it is a viable approach for moderately
large datasets.

2.2 Semantic Hashing

Salakhutdinov and Hinton proposed a nearest-neighbors technique for binary vec-
tors called Semantic Hashing whose speed is independent of the number of data
points [57]. Each binary vector corresponds to an address in memory. Matches to a
query vector are found by taking the query vector and systematically perturbing bits
within it, so exploring a Hamming ball around the original vector. Any neighbors in
the database that fall within this ball will be returned as neighbors. See Figure 3 for
an illustration.
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Fig. 4 Left: Query time as a function of code length, for different radii of the Hamming ball.
Right: Mean number of returned neighbors as a function of #bits and radius of Hamming ball.
Beyond 64 bits or so, the method is no longer significantly faster than brute force methods,
and there is a risk that many queries will not find any neighbors. Increasing the radius slows
the method down significantly, but does not significantly improve the number of neighbors
found.

The approach has two main advantages: (i) provided the radius of the Hamming
ball is small, it is extremely quick (i.e., μs, see Figure 2, bottom row); and (ii) con-
structing the database is also very fast, e.g., compared to kd-tree type data structures.

However, a major drawback is that it breaks down for long code vectors, since the
mean Hamming distance between points becomes large and the volume of the Ham-
ming ball (which is nchoosek(dimension,radius)) becomes prohibitive to explore.
To be concrete, suppose we have a code length of 100 bits. The mean distance to a
query’s closest neighbor may well be quite large, e.g., differing in 7 bits or more.
However, if one can afford only a Hamming ball radius search of 3, then very often
a query will not find any neighbors within that restricted search volume (see Fig-
ure 4, right). Another problem is that Semantic Hashing requires a contiguous block
of memory, which becomes impractical for vectors beyond l= 32 bits (corresponding
to a 4Gb block).1

This practical restriction motivates using sophisticated embedding methods to
preserve information within a very compact code. For example, neural network-
based methods that we will describe in Section 3.3.2 can be used to train a 30-bit
descriptor that yields μs retrieval times with Semantic Hashing, as shown in Figure 2
(bottom row). Alternatively, one can employ hashing algorithms that are designed
to map similar instances to the same bin, thus avoiding the need for Hamming ball
exploration or contiguous memory. We discuss such an approach next.

1 This can be circumvented by introducing a second randomized hash function that maps the
2l block of memory down to the permissible memory budget. An appropriate randomized
hash function will introduce few collisions and be quick, and thus will not impact query
accuracy or speed.
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Fig. 5 Locality Sensitive Hashing (LSH) uses hash keys constructed so as to guarantee col-
lision is more likely for more similar examples [33, 23]. Once all database items have been
hashed into the table(s), the same randomized functions are applied to novel queries. One
exhaustively searches only those examples with which the query collides.

2.3 Locality Sensitive Hashing

While the Semantic Hashing approach is simple and extremely effective for very
compact codes, it has the practical limitations discussed above, and also lacks
formal guarantees on the search quality obtained. Locality Sensitive Hashing is a
randomized hashing framework introduced earlier by Gionis, Indyk, and Motwani
that counters some of these shortcomings, and allows a user to explicitly control the
similarity search accuracy and search time tradeoff [23].

The main idea in Locality Sensitive Hashing (LSH) is to insert database items
into a hash table such that similar things fall in the same bucket, with high proba-
bility [33, 23, 1, 12]. Intuitively, if only highly similar examples collide in the hash
table (i.e., are assigned the same hash key), then at query time, directly hashing to
a stored bucket will reveal the most similar examples, and only those need to be
searched. See Figure 5 for a visualization of the method. The hash keys generally
consist of low-dimensional binary strings; each database item is mapped to b bits,
where each bit is generated independently by a valid locality-sensitive hash func-
tion.

Assuming such projections can be appropriately formed, there are algorithms to
retrieve the approximate neighbors for a query using hash tables or related data
structures [23, 1, 12]. The neighbors are “approximate” in that they are within some
ε error of the true near neighbor, and the bounds for the search time are tied to this
approximation error. For example, the query time for retrieving (1+ ε)-near neigh-
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bors can be bounded by O(n1/(1+ε)) for the Hamming distance using appropriate
hash functions [23]. This allows a trade-off between the sub-linear retrieval time
achieved and the extent to which the returns mimic an exhaustive linear scan, even
for high-dimensional input data. Thus, the hashing strategy has important advan-
tages over tree-based techniques that are known to perform poorly in practice for
high-dimensional data (e.g., kd-trees). Further, because LSH aims to have all rele-
vant instances collide in the same bucket (hash code), its query-time cost depends
only linearly on the number of bits used, and does not require a scan of neighboring
hash codes (in contrast to Semantic Hashing above).

Note that while early definitions of LSH functions were designed to preserve
a given geometric distance, work since has explored ways to formulate learned
locality-sensitive functions amenable to a target task, or functions that are sensi-
tive to a family of kernel functions, as we will see later in the chapter in Sections 3.2
and 4.3.

More formally, suppose we have a database consisting of data points xxx1, ...,xxxn.
Given an input query qqq, we are interested in finding those items in the database that
are most similar to the query, under some defined measure of similarity or distance
(which we will discuss in more detail below). The hash keys are constructed by
applying b binary-valued hash functions h1, . . . ,hb to each of the database objects,
where each hi is a random sampling from an LSH function familyH.

Nearest Neighbor-based LSH Definition. One formulation of LSH [12] describes
valid locality-sensitive functions by equating collision probabilities with a similarity
score; that is, each hash function hH drawn from the distributionH must satisfy:

p[hH(xxxi) = hH(xxx j)] = sim(xxxi,xxx j), (1)

where sim(xxxi,xxx j) ∈ [0,1] is the similarity function of interest.
The preprocessing of the database items is as follows. After computing the pro-

jections for all n database inputs, one then forms M = 2n1/(1+ε) random permu-
tations of the bits. If we think of the database hash keys as an n× b matrix, that
means we randomly permute the vector [1,2, . . . ,b] M times, and use each permu-
tation as indices to reorder the columns of the hash key matrix. Then each list of
permuted hash keys is sorted lexicographically to form M “sorted orders”. Given a
novel query, its hash key indexes into each sorted order with a binary search, and the
2M nearest examples found contain the approximate nearest neighbors. This proce-
dure requires searching O(n1/(1+ε)) examples using the original distance function
of interest to obtain the k = 1 approximate nearest neighbor (NN). See [12] for more
details. We will return to this definition below when discussing forms of supervised
and unsupervised LSH function generation.

Radius-based LSH Definition. While the above provides guarantees for approxi-
mating nearest neighbor search for a similarity function, another related formulation
of LSH provides guarantees in terms of the likelihood of collision with a query’s r-
radius neighbors (i.e., where the goal is to retrieve a database item within a given
radius of the query). Let d(·, ·) be a distance function over items from a set S, and for
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any item ppp ∈ S, let B(ppp,r) denote the set of examples from S within radius r from
ppp. Let hH denote a random choice of a hash function from the familyH. The family
H is called (r,r(1+ ε), p1, p2)−sensitive [23] for d(·, ·) when, for any qqq, ppp ∈ S,

• if ppp ∈ B(qqq,r) then p[hH(qqq) = hH(ppp)]≥ p1,
• if ppp /∈ B(qqq,r(1+ ε)) then p[hH(qqq) = hH(ppp)]≤ p2.

For a family of functions to be useful, it must satisfy p1 > p2. Note that the proba-
bility of collision for close points is thus at least pk

1, while for dissimilar points it is
at most pk

2.
During a preprocessing stage, all database points are mapped to a series of l

hash tables indexed by independently constructed g1, . . . ,gl , where each gi is a b-
bit function. Then, given a query qqq, an exhaustive search is carried out only on
those examples in the union of the l buckets to which qqq hashes. These candidates
contain the (r,ε)-nearest neighbors (NN) for qqq, meaning if qqq has a neighbor within
radius r, then with high probability some example within radius r(1+ ε) is found.2.
More recent work includes an LSH formulation for data in Euclidean space, with
improved query time and data structures [1].

Additional notes on LSH. Intuitively the concatenation of b bits into hash keys
decreases the false positive rate (we are more selective in what things will collide),
whereas the aggregation of search candidates from l independently generated tables
increases the recall (we are considering more randomized instances of the functions).

Early work by researchers in the theory community designated LSH function
families for Hamming distance, �p norms, and the inner product [17, 12], as well
as embedding functions to map certain metrics into Hamming space (e.g., the Earth
Mover’s Distance [34]). Given the attractive guarantees of LSH and the relatively
simple implementation, vision and machine learning researchers have also explored
novel hash function families so as to accommodate fast retrieval for additional met-
rics of interest. In particular, in this chapter we highlight hash functions for learned
Mahalanobis metrics (Section 3.2) and kernel functions (Section 4.3).

2.4 Recap of Search Strategy Tradeoffs

Whereas the Semantic Hashing technique discussed above essentially takes an em-
bedding strategy, where similarity ought to fall off smoothly as one looks at more
distant codes in Hamming space, Locality Sensitive Hashing takes a direct hashing
strategy, where similar items ought to map to the same hash key (i.e., Hamming
distance = 0). LSH does not entail the bit-length restriction of Semantic Hash-
ing. Memory usage with LSH is typically greater, however, assuming one opts to

2 For example, in [23] an LSH scheme using projections onto single coordinates is shown
to be locality-sensitive for the Hamming distance over vectors. For that hash function,
ρ = log p1

log p2
≤ 1

1+ε , and using l = nρ hash tables, a (1+ ε)-approximate solution can be

retrieved in time O(n
1

(1+ε) ).
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mitigate the 0-threshold Hamming distance by expanding the search to multiple
independently generated hash tables.3 Furthermore, whereas a user of Semantic
Hashing specifies a radius of interest in the embedded Hamming space, a user of
LSH (for the radius-based search variant) specifies the radius of interest in the orig-
inal feature space.

Perhaps the main distinction between the methods, however, is the degree to
which the search and embedding procedures are integrated. In Semantic Hashing,
the procedure to construct the binary embedding is performed independently (with-
out knowledge of) the ultimate search data structure, whereas in LSH, the binary
projections and search structure are always intertwined. This distinction can be
viewed as a pro or con for either hashing implementation. The elegance and bounds
of LSH are a potential advantage, but the restriction of designating appropriate LSH
functions limits its flexibility. On the other hand, Semantic Hashing has the flexi-
bility of choosing various learning algorithms to form the binary projections, but its
behavior is less predictable with respect to an exhaustive linear scan.

While we will discuss the hash code construction techniques below in the context
of one hashing implementation or the other, in practice a user could incorporate
either one (or the linear scan), simply keeping the above tradeoffs in mind.

3 Supervised Methods for Learning Binary Projections

The quality of retrieval results clearly will depend on the chosen image represen-
tation as well as the distance metric used to compare examples. Ideally, these two
components would together accurately reflect the instances’ true relationships, such
that relevant database items have a small distance to the query, and irrelevant items
have a large distance. While a generic distance function (such as an Lp norm) may be
more manageable computationally for large-scale search, it may or may not nicely
match the desired relationships for a given application. Instead, if we have access to
some form of supervision on a subset of examples, then we can attempt to learn how
to compare them. General supervised classification methods as well as advances in
metric learning over the last several years make it possible to fine-tune parametric
distance functions [73, 5, 26, 59, 30, 71, 24, 19, 31, 16, 4].

Furthermore, we can attempt to simultaneously learn binary projections that re-
flect those specialized comparisons, thereby enabling fast Hamming space compar-
isons. Addressing both aspects generally entails optimizing the metric parameters
according to data labeled by their classes or known distance relationships, while
also balancing a preference for compact projections.

In this section, we describe two such approaches in detail. The first approach
generates randomized hash functions that are locality-sensitive for learned Maha-
lanobis metrics, exploiting a sparse set of similarity constraints on tuples of points

3 In practice, a common implementation hack is to simply look at nearby bins according to
Hamming distance, similar to Semantic Hashing, even if not necessarily using addresses
as the bin index.
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Fig. 6 Supervision about which instances should be near or far from one another could come
from a variety of sources.

(Section 3.2). The second approach learns a Hamming embedding from a set of
labeled training images (Section 3.3). Both map similar examples to be close-by
in a binary space, while keeping dissimilar examples far apart. They differ primar-
ily in the types of learning algorithms integrated to preserve those constraints, and
secondarily in the hashing implementation employed alongside.

3.1 Forms of Supervision to Define Semantic Similarity

In the various supervised methods for code construction we discuss, the external
supervision can take a variety of forms: labels or feedback on instances can specify
those which ought to cluster together, relative judgments on triples of instances can
specify their ideal relationships, or the desired nearest neighbor lists for a sample
of points can specify those that need to remain close. As such, the techniques are
suitable for enhancing nearest neighbor categorization as well as similarity search
for content-based retrieval. Figure 6 highlights some possible sources of similarity
constraints in the visual search domain.

When similarity constraints are non-exhaustive across a set of training data, we
will represent them as sets of pairs: a set S containing pairs that should remain
close (similar), and a set D containing pairs that should remain far (dissimilar).
Alternatively, if we have complete pairwise information on all N training instances,
we can think of the semantic information stored in an N×N matrix. To represent
binary similarity constraints, the i, j-th entry in that matrix is 1 if two instances are
meant to be close, 0 if far (e.g., with a discrete set of class labels, the entry is 1 for
any same-class pairs of points).
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Fig. 7 Left: Where dense annotations are available, they can be used to define a semantic
similarity metric between images. In this pair of images from LabelMe, users have labeled
pixels as belonging to different objects like cars, roads, tree, sky and so on. Right: The seman-
tic similarity between training images is obtained by computing the intersection of the spatial
pyramid histogram built on the object category label maps of the two images. The same ob-
jects in the same positions produce the highest similarity, and the score degrades smoothly as
the locations of the objects differ. See [65] for details.

However, the desired relationships need not be discrete; work in this area also de-
rives continuous semantic distance functions from class information or other anno-
tations, specifying a richer set of constraints that ought to be preserved by the binary
codes. For example, Fergus et al. explore using the distance between classes in Word-
Net to quantify their semantic distance [20]. Or, rather than enforce similarity only
between pairs of classes, one can incorporate a desired similarity between individual
images (e.g., by collecting image-level constraints from online annotators).

Additionally, if pixel-level labels exist, as opposed to image-level ones, then more
fine-grained measures can be used. Torralba et al. [65] define ground truth semantic
similarity based a spatial pyramid matching [27, 41] scheme on the object label
maps, as illustrated in Figure 7. This results in a simple similarity measure that takes
into account the objects present in the image as well as their spatial organization:
two images that have the same object labels in similar spatial locations are rated as
closer than two images with the same objects but in different spatial locations, and
either case is rated closer than two images with different object classes.

3.2 Hash Functions for Learned Mahalanobis Kernels

Having defined possible sources of supervision, we now describe how those seman-
tics are integrated into binary code learning. We first review a hashing-based algo-
rithm for learned Mahalanobis metrics introduced by Jain and colleagues in [37, 40].
The main idea is to learn a parameterization of a Mahalanobis metric (or kernel)
based on provided labels or paired constraints for some training examples, while
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simultaneously encoding the learned information into randomized hash functions.
These functions will guarantee that the more similar inputs are under the learned
metric, the more likely they are to collide in a hash table. After indexing all of the
database examples with their learned hash keys, those examples similar to a new
instance are found in sub-linear time via hashing.

Learned Mahalanobis Metrics and Kernels. The majority of work in metric
learning focuses on learning Mahalanobis metrics (e.g., [73, 71, 26, 5, 19]). Given
N points {xxx1, . . . ,xxxN}, with all xxxi ∈ ℜd , the idea is to compute a positive-definite
(p.d.) d× d matrix A to parameterize the squared Mahalanobis distance:

dA(xxxi,xxx j) = (xxxi− xxx j)
T A(xxxi− xxx j), (2)

for all i, j = 1, . . . ,N. Note that a generalized inner product (kernel) measures the
pairwise similarity associated with that distance:

sA(xxxi,xxx j) = xxxT
i Axxx j. (3)

The Mahalanobis distance is often used with A as the inverse of the sample covari-
ance when data is assumed to be Gaussian, or with A as the identity matrix if the
squared Euclidean distance is suitable.

Let S and D denote sets containing pairs of points constrained to be similar and
dissimilar, respectively. Given these similarity constraints, one can learn the matrix
A to yield a measure that is more accurate for a given problem.

For example, Xing et al. learn a Mahalanobis metric by using semidefinite pro-
gramming to minimize the sum of squared distances between similarly labeled
examples, while requiring a certain lower bound on the distances between exam-
ples with different labels [73]. In related techniques, Globerson and Roweis [24]
constrain within-class distances to be zero and maximize between-class distances,
Weinberger et al. formulate the problem in a large-margin k-nearest-neighbors set-
ting [71], while Goldberger et al. maximize a stochastic variant of leave-one-out
KNN score on the training set [26]. In addition to using labeled data, research has
shown how metric learning can proceed with weaker supervisory information, such
as equivalence constraints or relative constraints. For example, equivalence con-
straints are exploited in the Relevant Component Analysis method of Bar-Hillel et
al. [5]; the method of Hadsell et al. [29] learns a global non-linear mapping of the in-
put data; the Support Vector Machine-based approach of Schultz and Joachims [59]
incorporates relative constraints over triples of examples. Davis et al. develop an
information-theoretic approach that accommodates any linear constraints on pairs
of examples, and provide an efficient optimization solution that forgoes eigenvalue
decomposition [19].

Main Idea. To use a learned Mahalanobis metric for search, we want to retrieve
examples xxxi for an input xxxq for which the value dA(xxxi,xxxq) resulting from Eqn. (2) is
small—or, in terms of the kernel form, for which the value of sA(xxxi,xxxq) = xxxT

q Axxxi is
high. We next describe how to generate hash functions for the Mahalanobis similar-
ity (1) in the explicit case, where the dimensionality of the data is low enough that
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Fig. 8 Whereas traditional unsupervised LSH functions would generate a hyperplane uni-
formly at random to separate instances, randomized hash functions for a learned kernel are
biased so as to ensure similar things become more likely to collide, while dissimilar things
become less likely to collide. The hourglass-shaped regions denote that the hash function
will be more likely to drawn as such. In the left example, even though the measured angle
between xi and x j is somewhat wide, the learned hash functions are unlikely to split them
into different buckets since the constraints indicate that they (and pairs like them) should be
treated as similar.

the d× d matrix A can be handled in memory, and (2) in the implicit case, where A
cannot be accessed directly and we want to use a kernelized form of metric learning.

Explicit Formulation. In [12], Charikar proposes a hash function family that is
locality-sensitive for the normalized inner product (cosine similarity):

sim(xxxi,xxx j) =
xxxT

i xxx j

‖xxxi‖2‖xxx j‖2
. (4)

Each hash function simply rounds the output of a product with a random hyperplane:

hrrr(xxx) =

{
1, if rrrT xxx≥ 0
0, otherwise

, (5)

where rrr is sampled from a zero-mean multivariate Gaussian N (0, I) of the same
dimensionality as the input xxx. The fact that this hash function satisfies the LSH
requirement p[h(xxxi) = h(xxx j)] = sim(xxxi,xxx j) relies on a result from Goemans and
Williamson [25], who showed that

p[sign(xxxT
i rrr) = sign(xxxT

j rrr)] = 1− 1
π

cos−1
(

xxxT
i xxx j

‖xxxi‖‖xxx j‖
)
, (6)

for vectors on the unit sphere. This relationship is quite intuitive: the wider the angle
between two vectors xxxi and xxx j, the more likely a randomly selected hyperplane will
fall between them, and vice versa.
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As shown by Jain et al. [37], this is easily extended to accommodate learned
Mahalanobis distances. Given the p.d. matrix A, with A = GT G, we generate the
following randomized hash functions hrrr,A, which accept an input point and return a
single hash key bit:

hrrr,A(xxx) =

{
1, if rrrT Gxxx≥ 0
0, otherwise

, (7)

where the vector rrr is again chosen at random from a d-dimensional Gaussian distri-
bution with zero mean and unit variance.4 By parameterizing the hash functions by
not only rrr but also A, we obtain the following relationship:

p [hrrr,A(xxxi) = hrrr,A(xxx j)] = 1− 1
π

cos−1
(

xxxT
i Axxx j√|Gxxxi||Gxxx j|

)
,

which fulfills the LSH requirement of Eqn. (1) for a metric obtained with any of the
Mahalanobis metric learning algorithms. Essentially we have biased the selection
of the random hyperplane according to the learned parameters, and by factoring it
by G we allow the random hash function itself to “carry” the information about the
learned metric. See Figure 8. The denominator in the cosine term normalizes the
learned kernel values.

Implicit Formulation. Beyond the explicit formulation given above, we are also
interested in the case where the dimensionality d may be very high—say on the
order of 104 to 106—but the examples are sparse and therefore can be stored effi-
ciently. For example, bag of visual word descriptors or histogram pyramids often
require millions of dimensions [63, 27, 51]. Even though the examples are them-
selves sparse and therefore compactly represented, the matrix A can be dense.

In this case, we turn to a particular information-theoretic metric learning (ITML)
algorithm developed by Davis et al. [19]. In contrast to most other Mahalanobis
metric learning approaches, it is kernelizable. It takes an initial “base" parameteri-
zation A0 as input, and then during the learning process it computes implicit updates
to those parameters, using weighted kernel evaluations between pairs of points in-
volved in the similarity constraints (as opposed to explicit multiplication with A).
We briefly summarize the relevant portions of the ITML approach; see [19] for
more details.

Information-Theoretic Metric Learning. Given an initial d×d p.d. matrix A0 spec-
ifying prior knowledge about inter-point distances, the learning task is posed as an
optimization problem that minimizes the LogDet loss between A0 and the ultimate
learned parameters A, subject to a set of constraints specifying pairs of examples
that are similar or dissimilar (listed in the sets S and D):

4 In this case—where A can be explicitly handled in memory—we could equivalently trans-
form all the data according to A prior to hashing; however, the choice of presentation here
helps set up the formulation presented next.
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min
A�0

D�d(A,A0)

s. t. dA(xxxi,xxx j)≤ u (i, j) ∈ S,
dA(xxxi,xxx j)≥ � (i, j) ∈ D,

(8)

where D�d(A,A0) = tr(AA−1
0 )− logdet(AA−1

0 )− d, d is the dimensionality of the
data points, dA(xxxi,xxx j) is the Mahalanobis distance between xxxi and xxx j as defined
in Eqn. (2), and � and u are large and small values, respectively.5 The objective
is “information-theoretic” in that it corresponds to minimizing the relative entropy
between the associated Gaussians whose covariance matrices are parameterized by
A and A0.

The LogDet loss leads to an efficient algorithm for optimizing Eqn. (8), which
involves repeatedly projecting the current solution onto a single constraint, via the
explicit update [19]:

At+1 = At +βtAt(xxxit − xxx jt )(xxxit − xxx jt )
T At , (9)

where xxxit and xxx jt are the constrained data points for iteration t, and βt is a projection
parameter computed (in closed form) by the algorithm.

However, when the dimensionality of the data is very high, one cannot explicitly
work with A, and so the update in Eqn. (9) is impractical. Instead, it is replaced
with updates in kernel space for an equivalent kernel learning problem in which
K =XT AX for X = [xxx1, . . . ,xxxc], for a small set of c of the points involved in similarity
constraints (see [40]). If K0 is the input kernel matrix for the data (K0 = XT A0X ),
then the appropriate update is:

Kt+1 = Kt +βtKt(eeeit − eee jt )(eeeit − eee jt )
T Kt , (10)

where the vectors eeeit and eee jt refer to the it -th and jt -th standard basis vectors, re-
spectively. This update is derived by multiplying Eqn. (9) on the left by XT and on
the right by X . If A0 = I, then the initial kernel matrix is K0 = XT X ; this matrix may
be formed using any valid kernel function, and the result of the algorithm is to learn
a distance metric on top of this input kernel. By performing the updates in kernel
space, the storage requirements change from O(d2) to O(c2).

Simultaneous Metric and Hash Function Updates. In order to permit large-scale
search with such metrics, the goal is to use the same hash functions as defined above
in Eqn. (7), but to express them in a form that is amenable to computing the hash bit
with high-dimensional input data. In other words, we want to insert the learned pa-
rameters into the hash function and compute rrrT Gxxx, but now we must do so without
working directly with G. To this end, we describe next how to simultaneously make
implicit updates to both the hash functions and the metric.

5 Note that alternatively the constraints may also be specified in terms of relative distances,
i.e., dA(xxxi,xxx j) < dA(xxxi,xxxk). To guarantee the existence of a feasible A, slack variables are
also included, but omitted here for brevity.
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In [37], Jain et al. show how to express G in terms of the initially chosen c data
points. Let X = [xxx1, . . . ,xxxc] be the d×c matrix of an initial c data points participating
in (dis)similarity constraints, and let xxxT

i xxx j be the initial (non-learned) Mahalanobis
similarity value between example xxxi and the input xxx j. Recall the update rule for A
from Eqn. (9): At+1 = At +βtAtvvvtvvvT

t At , where vvvt = yyyt − zzzt , if points yyyt and zzzt are
involved in the constraint under consideration at iteration t. Just as this update must
be implemented implicitly via Eqn. (10), so too we must derive an implicit update
for the Gt matrix required by our hash functions. Since At is p.d., we can factorize
it as At = GT

t Gt , which allows us to rewrite the update as:

At+1 = GT
t (I+βtGtvvvtvvv

T
t GT

t )Gt .

As a result, factorizing I +βtGtvvvtvvvT
t GT

t , we can derive an update for Gt+1:

Gt+1 = (I +βtGtvvvtvvv
T
t GT

t )
1/2Gt

= (I +αtGtvvvtvvv
T
t GT

t )Gt , (11)

where the second equality follows from Lemma 1 in [40] using yyy = Gtvvvt , and αt is
defined accordingly.

Using Eqn. (11) and Lemma 2 in [40], Gt can be expressed as Gt = I +XStXT ,
where St is a c× c matrix of coefficients that determines the contribution of each of
the c points to G. Initially, S0 is set to be the zero matrix, and from there every St+1

is iteratively updated in O(c2) time via

St+1 = St +αt(I +StK0)(eeeit − eee jt )(eeeit − eee jt )
T (I+K0ST

t )(I+K0St).

Using this result, at convergence of the metric learning algorithm we can compute
Gxxx in terms of the c2 input pairs (xxxi,xxx j) as follows:

Gxxx = xxx+XSXT xxx

= xxx+
c

∑
i=1

c

∑
j=1

Si jxxx jxxx
T
i xxx.

Therefore, we have

rrrT Gxxx = rrrT xxx+
c

∑
i=1

c

∑
j=1

Si jrrr
T xxx jxxx

T
i xxx, (12)

and the final implicit hash function hrrr,A for an input xxx can be defined as:

hrrr,A(xxx) =

{
1, if rrrT xxx+∑c

i=1 γr
i xxxT

i xxx≥ 0
0, otherwise

, (13)

where each γr
i = ∑ j Si jrrrT xxx j.

There are several important things to notice about the ultimate hash function
definition. First, we see that the values of each γr

i rely only on the basis points, and
thus can be efficiently computed in the training phase, prior to hashing anything
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Fig. 9 Hashing error relative to an exhaustive linear scan as a function of ε , which controls
the search time required. The error rate of exhaustive search decreases substantially once the
similarity constraints on labeled data are used to learn a matching kernel (compare flat dotted
black line to flat solid pink line). When these constraints are integrated into the hash function
selection, we can obtain similar results to the linear scan, but searching just a fraction of the
data (compare ML+PDK Hashing curve to ML+PDK Linear Scan line). Result is from [40].

into the database. Second, the summation consists of as many terms as there are
basis constrained points c—not the total number of constraints used during metric
learning, nor the number of total database points. This is particularly important at
query time, when we want the overhead of computing the query’s hash key to be
low (certainly, it must not require comparing to each database point!) Third, we
emphasize that while G is dense and therefore rrrT G is not manageable, this method
does assume that computing rrrT xxx is manageable; for sparse data, only the entries of
rrr corresponding to non-zero entries in xxx need to be generated. 6 Finally, in practice,
it is a strength of the ITML metric learning formulation that one may provide an
initial parameterization A0 based on any a priori knowledge, refining it with the
external similarity constraints. For example, one could initialize with a pyramid
match kernel, and refine it with the similarity constraints.

Figure 9 shows an example result using these supervised LSH functions to index
Flickr images of 18 different tourist sites, where the images are represented with
sets of local SIFT [45] features. Using a base matching kernel [43] as input, the
algorithm learns a Mahalanobis kernel on top of it, and simultaneously updates the
LSH function parameterization. Then a nearest-neighbor scene classification task
is posed. The results illustrate the nice control one has on the balance between (i)
the search time required and (ii) the accuracy guaranteed relative to a linear scan,
as determined by the LSH parameter ε (discussed above in Section 2.3). Searching
only about 2% of the database, we see error levels similar to that of an exhaustive
linear scan with the learned metric.

6 Thus it is particularly efficient when the inputs are sparse. If they are high-dimensional but
dense, the implicit form is still valuable, as it bypasses computing O(d2) products with G
and requires only O(d) inner products for rrrT xxx.
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Interestingly, this plot also reveals that the learning stage has a dimensionality
reduction effect. While both hashing curves use the same number of hash bits b, the
learned hash functions more closely approximate the associated linear scan result.
(Compare the relative gaps between the top two curves and the bottom two curves,
respectively.) We can attribute this to the fact that the learned hash functions usefully
focus the partitions’ placement in the original feature space, requiring fewer bits for
the same representational power.

3.3 Learned Binary Embeddings for Semantic Similarity

The previous section reviewed methods for hashing with learned Mahalanobis met-
rics, where the similarity constraints are used to establish a linear transformation of the
original input space (possibly implicitly computed). In this section we consider other
more general types of transformations that can be constructed using labeled training
examples. The main idea is to exploit supervised learning algorithms to aggregate
a set of functions that jointly preserve the desired neighborhood structure. Whereas
the learned kernel technique above generates locality-sensitive hash functions, these
techniques generate Hamming embeddings (refer back to Section 2 for contrasts).

Specifically, the methods in this section address the following learning problem:
given a database of images {xxxi} and a distance function d(xxxi,xxx j) we seek a binary
feature vector yyyi = f (xxxi) that preserves the nearest neighbor relationships using a
Hamming distance. Formally, for a point xxxi, denote by N100(xxxi) the indices of the
100 nearest neighbors of xxxi according to a semantic distance function d(xxxi,xxx j) de-
rived using one of the supervision forms described in Section 3.1. Similarly, define
N100(yyyi) to be the set of indices of the 100 descriptors yyy j that are closest to yyyi in
terms of Hamming distance. Ideally, we would like N100(xxxi) =N100(yyyi) for all ex-
amples in our training set.

We discuss two general approaches to learning the explicit mapping functions.
The first is a variant of the Parameter Sensitive Hashing (PSH) algorithm of
Shakhnarovich et al., which uses boosting and a rounding-based LSH function to
select feature dimensions that are most indicative of similarity in some parameter
space of interest (e.g., human pose joint angles in their application) [61, 60]. The
second is a neural network-based approach explored by Salakhutdinov and Hin-
ton [57] and Torralba et al. [65], the former being used for document retrieval. These
models utilize a form of unsupervised pre-training using a stack of restricted Boltz-
mann machines (RBMs).

3.3.1 Boosting-Based Embedding

In Shakhnarovich et al. [61], each image is represented by a binary vector with b
bits yyyi = [h1(xxxi),h2(xxxi), ...,hb(xxxi)], so that the distance between two images is given
by a weighted Hamming distance d(xxxi,xxx j) = ∑b

l=1αl |hl(xxxi)− hl(xxx j)|. The weights
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αi and the functions hl(xxxi) are binary regression stumps that map the input vector xxxi

into binary features and are learned using Boosting.
For the learning stage, positive examples are pairs of images xxxi,xxx j so that xxx j is one

of the nearest neighbors of xxxi, j ∈N (xxxi). Negative examples are pairs of images that
are not neighbors. In our implementation we use GentleBoost with regression stumps
to minimize the exponential loss. In PSH, each regression stump has the form:

fl(xxxi,xxx j) = αl
[
(eT

l xxxi > Tl) = (eT
l xxx j > Tl)

]
+βl. (14)

At each iteration l, we select the parameters of fl , the regression coefficients (αl , βl),
the stump parameters (where el is a unit vector, so that eT

l xxx returns the lth component
of xxx, and Tl is a threshold), to minimize the square loss:

N

∑
n=1

wn
l (zn− fl(xxx

n
i ,xxx

n
j))

2, (15)

where N is the number of training pairs, zn is the neighborhood label (zn = 1 if the
two images are neighbors and zn = −1 otherwise), and wn

l is the weight for each
training pair at iteration l given by wn

l = exp(−zn∑l−1
t=1 fl(xxxn

i ,xxx
n
j)).

In Torralba et al. [65] the authors constrain the metric to be a Hamming distance,
restricting the class of weak learners so that all the weights are the same for all
the features αl = α . (The values of βl do not need to be constrained as they only
contribute to final distance as a constant offset, independent of the input pair.) This
small modification is important as it permits standard Hashing techniques to be used.
The parameter α has an effect in the generalization of the final function.

Once the learning stage is finished, every image can be compressed into b bits,
where each bit is computed as hl(xxxi) = eT

l xxxi > Tl . The algorithm is simple to code,
and relatively fast to train.

3.3.2 Restricted Boltzmann Machines-Based Embedding

The second approach uses the dimensionality reduction framework of Salakhutdi-
nov and Hinton [32, 57], based on multiple layers of restricted Boltzmann machines
(RBMs). We first give a brief overview of RBM’s, before describing their use in
Torralba et al. [65] where they are applied to images.

An RBM models an ensemble of binary vectors with a network of stochastic
binary units arranged in two layers, one visible, one hidden. Units v in the visible
layers are connected via a set of symmetric weights W to units h in the hidden layer.
The joint configuration of visible and hidden units has an energy:

E(v,h) =− ∑
i∈visible

bivi− ∑
j∈hidden

b jh j−∑
i, j

vihiwi j , (16)

where vi and h j are the binary states of visible and hidden units i and j. The weights
are denoted by wi j , and bi and b j are bias terms, also model parameters. Using this
energy function, a probability can be assigned to a binary vector at the visible units:
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p(v) =∑
h

e−E(v,h)

∑u,g e−E(u,g)
. (17)

RBMs lack connections between units within a layer, hence the conditional dis-
tributions p(h|v) and p(v|h) have a convenient form, being products of Bernoulli
distributions:

p(h j = 1|v) = σ(b j +∑
i

wi jvi)

p(vi = 1|h) = σ(bi +∑
j

wi jh j), (18)

where σ(u)= 1/(1+e−u), the logistic function. Using Eqn. 18, parameters wi j,bi,b j

can be updated via a contrastive divergence sampling scheme (see [32] for details).
This ensures that the training samples have a lower energy than nearby hallucina-
tions, samples generated synthetically to act as negative examples.

Hinton and colleagues have demonstrated methods for stacking RBMs into mul-
tiple layers, creating “deep” networks which can capture high order correlations be-
tween the visible units at the bottom layer of the network. By choosing an architec-
ture that progressively reduces the number of units in each layer, a high-dimensional
binary input vector can be mapped to a far smaller binary vector at the output. Thus
each bit at the output maps through multiple layers of non-linearities to model the
complicated subspace of the input data.

Since the input descriptors will typically be real-valued, rather than binary
(e.g. Gist or SIFT descriptors), the first layer of visible units are modified to have a
Gaussian distribution.7

The deep network is trained into two stages: first, an unsupervised pre-training
phase which sets the network weights to approximately the right neighborhood;
second, a fine-tuning phase where the network has its weights moved to the local
optimum by back-propagation on labeled data.

In pre-training, the network is trained from the visible input layer up to the output
layer in a greedy fashion. Once the parameters of the first layer have converged using
contrastive divergence, the activation probabilities (given in Eqn. 18) of the hidden
layer are fixed and used as data for the layer above—the hidden units becoming the
visible ones for the next layer up, and so on up to the top of the network.

In fine-tuning, the units are made deterministic, retaining the weights and biases
from pre-training and performing gradient descent on them using back-propagation.
One possible objective function is Neighborhood Components Analysis (NCA) [26,
56]. This attempts to preserve the semantic neighborhood structure by maximizing
the number of neighbors around each query that have the same class labels. Given
N labeled training cases (xn,cn), denote the probability that point n is assigned the

7 In Eqn. 18, p(vi = u|h) is modified to be a Gaussian with a mean determined by the hidden
units; see [56].
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Ground truth neighbors L2−Pixels Gist 8−RBM16−RBM32−RBMInput image

Fig. 10 Each row shows the input image and the 12 nearest neighbors using, a) ground truth
distance using the histograms of objects present on each image (see text), b) L2 distance using
RGB values, c) L2 distance using Gist descriptors, d) Gist features compressed to 8 bits using
an RBM and Hamming distance, e) 16 bits RBM and f) 32 bits RBM.

class of point m as pnm. The objective ONCA attempts to maximize the expected
number of correctly classified points on the training data:

ONCA =
N

∑
n=1

∑
l:cn=cl

pnm, pnm =
e−|| f (xn|W )− f (xl |W )||2

∑m�=l e−|| f (xm|W )− f (xl |W)||2 ,

where f (x|W ) is the projection of the data point x by the multi-layered network with
parameters W . This function can be minimized by taking derivatives of ONCA with
respect to W and using conjugate gradient descent. Alternative objective functions
include the DrLIM objective introduced by Hadsell et al. [29].

Figure 10 shows representative retrieval results on a 20,000 LabelMe dataset.
Gist descriptors [50] are used as the high-dimensional input representation for each
image (single descriptor per image). Figure 11 provides a quantitative analysis of
the retrieval performance on 2,000 test images. Figure 11(a) displays the percent-
age of the first true 50 nearest neighbors that are included in the retrieved set as a
function of the number of the images retrieved (M). Figure 11(b) shows a section of
Figure 11(a) for 500 retrieved images. The figures compare LSH (with no learning),
PSH and RBMs. Figure 11(b) shows the effect of increasing the number of bits.
Top performance is reached with around 30 bits for RBMs, with the other meth-
ods requiring more bits. However, given enough bits, all the approaches converge to
similar retrieval performance. The matching speed using the binary codes and the
Gist descriptors is shown in Figure 2, where the compact codes facilitate extremely
fast retrieval.
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Fig. 11 (a): For a fixed number of true neighbors (|N |= 50), we plot the percentage of true
nearest neighbors that are retrieved as a function of the total number of images retrieved.
True neighbors are defined in terms of object label histograms (see Figure 7). The original
Gist descriptors (blue) perform well but a slow to match due to high dimensionality. LSH
(magenta), which does not use learning, performs less well than Boosting (red) and the RBM-
based (green) methods. The Boosting and RBM-based embeddings, despite using only 32-bits
per descriptor match the performance of the original Gist. (b): Varying the number of bits for
500 retrieved images.

Figure 11(a) also shows a comparison with the more conventional kd-tree based
methods. Here the FLANN [47] kd-tree implementation was applied to the Gist
descriptors (converted to uint8), both with (black) and without (cyan) a preliminary
PCA projection down to 128 dimensions. To give a fair comparison, the kd-tree
parameters were adjusted to give a comparable retrieval time to the other methods.
The performance can be seen to be considerably worse than the approaches using
binary codes. This is due to the poor performance of kd-tree type approaches in high
dimensional spaces.

3.4 Other Supervised Methods

Building on the ideas presented thus far, recent work has explored alternative meth-
ods to learn hash functions. Wang et al. propose a supervised form of PCA, where
pairwise binary labels act as constraints on the projection [70]. Projecting new ex-
amples with this approach requires a Nystrom-based out-of-sample projection. Mu
and colleagues develop a kernel-based maximum margin approach to select hash
functions [46], and a semi-supervised approach that minimizes empirical error on
a labeled constraint set while promoting independence between bits and balanced
partitions is described in [69]. The SPEC hashing approach [42] uses a conditional
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entropy measure to add binary functions in a way that matches a desired similarity
function, but approximately so as to ensure linear run-time.

Jain and colleagues develop a dynamic hashing idea to accommodate metrics
learned in an online manner, where similarity constraints are accumulated over time
rather than made available at once in batch [36]. Bronstein and colleagues extend
the idea of learning binary similarity functions with boosting to the cross-modal
case, where data comes from two different input spaces (e.g., we want to judge the
similarity between a CT and a PET image) [11].

Whereas the technique in Section 3.2 above connects Mahalanobis and ITML-
learned kernels to LSH, the Kernelized LSH approach developed by Kulis & Grau-
man provides a connection for arbitrary kernel functions [39], which includes
kernels learned with ITML or otherwise. We will review this method in Section 4.3,
since it can be applied in both supervised and unsupervised settings.

4 Unsupervised Methods for Defining Binary Projections

In the previous section, we reviewed supervised algorithms that require some form
of label information to define which points should be close by and which should be
far apart in the binary space. We now look at unsupervised techniques that simply
try to preserve the neighborhood structure between points in the input space, and
thus require no labels.

The goal is to compute a binary representation of the original representation for
each image, so that similar instances have similar binary codes. Typically the orig-
inal feature space and distance are Euclidean, but alternatives are possible, as dis-
cussed in Sections 4.1 and 4.3 below. Additionally, we want the code to be easily
computed for a novel input and to be compact in length, thus enabling efficient
methods such as Semantic Hashing (see Section 2.2) to be used.

We first briefly summarize several methods for specific similarity functions (Sec-
tion 4.1), then discuss a spectral approach for coding the Euclidean distance on
real-valued vector data (Section 4.2), and finally review an approach to generate
codes for kernel functions, including those over non-vector data (Section 4.3).

4.1 Binary Codes for Specific Similarity Functions

Several embedding functions that map a specialized distance into a generic space
(e.g., Euclidean) have been developed to exploit either hashing or Hamming space
search for particular metrics of interest. In order to exploit known LSH func-
tions [17], Indyk and Thaper design a low-distortion L1 embedding for the bijec-
tive match distance between two sets of feature vectors [34]. Grauman and Darrell
construct a related embedding for the normalized partial match, showing that an
implicit unary encoding with a linear kernel is equivalent to the pyramid match ker-
nel on feature sets [28], thereby allowing hashing with the function in Eqn. (5).
A related embedding is given in [40] for the proximity distribution kernel [43],
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which is an image matching kernel that accounts for both the correspondence be-
tween features and their relative spatial layout.

The Min-Hash technique introduced by Broder [10] is a randomized embedding
designed to capture the normalized set overlap: sim(S1,S2) =

|S1
⋂

S2|
|S1
⋃

S2| , for sets S1

and S2. Assuming we have a discrete set (vocabulary) of tokens that may appear
in any set, we generate a random permutation of those unique tokens. Then, given
any input set, its Min-Hash key is the token present in the set that has the minimum
value (appears first) in the permutation. The probability that two sets receive the
same Min-Hash value is equal to the overlap similarity. Intuitively, the permutations
correspond to picking some token from the sets’ union at random, and checking
whether both contain it. The higher the overlap between two sets, the more likely we
draw a token they share. Similar to the hash table construction process described in
Section 2.3, one concatenates multiple such hash values to generate a hash key, and
aggregates results over multiple independently generated functions. The set over-
lap is meaningful for gauging document similarity, and Min-Hash was initially used
for efficient near-duplicate detection among Web pages. Chum and colleagues have
shown its suitability for near-duplicate detection for bag of words image represen-
tations as well, and adapt the idea to include the effective tf-idf weighting [14], and
to integrate spatial layout of features into the hash selection [13].

Notably, all of the above projection techniques cater to sets of features, where
each instance is comprised of some variable number of descriptors, and the desired
distance computes some matching or overlap between them. Such techniques’ suc-
cess for image search applications is a result of the strong local feature representa-
tions used widely in the recognition and CBIR communities in the last decade.

Aside from set-based metrics, Rahimi and Recht design embeddings for a partic-
ular form of shift-invariant kernel. They propose randomized mappings into a real-
valued low-dimensional feature space such that an inner product approximates a given
shift-invariant kernel, such as the Gaussian or Laplacian kernel [53]. Note that while
the intent in that work is to exploit linear machine learning algorithms that permit fast
training with large-scale data (as opposed to search), one could take such an embed-
ding and again use the randomized hyperplane hash functions (Eqn. (5)). Raginsky
and Lazebnik also show how to convert those real-valued mappings to binary outputs
so that Hamming space search is applicable, with bounds on the expected normalized
Hamming distance relative to the original shift-invariant kernel value [52].

4.2 Spectral Hashing

Whereas the above section addresses unsupervised codes developed for particular
similarity functions of interest, we now examine a technique that not only aims to
preserve the given similarities, but also attempts to satisfy generic properties that
make compact binary codes effective. This is the Spectral Hashing framework de-
veloped by Weiss et al. [72].

In formalizing the requirements for a good code, we see that they are equivalent
to a particular form of graph partitioning. This means that even for a single bit, the
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problem of finding optimal codes is NP hard. On the other hand, the analogy to graph
partitioning suggests a relaxed version of the problem that leads to very efficient
eigenvector solutions. These eigenvectors are exactly the eigenvectors used in many
spectral algorithms including spectral clustering and Laplacian eigenmaps [6, 49],
hence the name “Spectral Hashing” [72].

We have already discussed several basic requirements of a good binary code: it
should (1) be easily computed for a novel input; (2) require a small number of bits to
code the full dataset and (3) map similar items to similar binary codewords. Beyond
these basic requirements, however, the Spectral Hashing approach also aims to form
codes that more efficiently utilize each bit. Specifically, we require that each bit have
a 50% chance of being one or zero, and that different bits be independent of each
other. Among all codes that have this property, we will seek the ones where the
average Hamming distance between similar points is minimal.

Let {yyyi}N
i=1 be the list of codewords (binary vectors of length b) for N data points

and WN×N be the affinity matrix. Assuming the inputs are embedded in Rd so that
Euclidean distance correlates with similarity, a suitable affinity is W (i, j) =
exp(−‖xxxi− xxx j‖2/ε2). Thus the parameter ε defines the distance in Rd which corre-
sponds to similar items. Using this notation, the average Hamming distance between
similar neighbors can be written:∑i j Wi j‖yyyi−yyy j‖2. By relaxing the independence as-
sumption and requiring the bits to be uncorrelated the following problem is obtained:

minimize :∑
i j

Wi j‖yyyi− yyy j‖2 (19)

sub ject to : yyyi ∈ {−1,1}b

∑
i

yyyi = 0

1
N ∑

i

yyyiyyy
T
i = I,

where the constraint ∑i yyyi = 0 requires each bit to fire 50% of the time, and the
constraint 1

N ∑i yyyiyyy
T
i = I requires the bits to be uncorrelated. For a single bit, solving

problem 19 is equivalent to balanced graph partitioning and is NP hard (see [72] for
proof), thus the problem must be relaxed in some way to make it tractable.

Spectral Relaxation. By introducing an N×b matrix Y whose jth row is yyyT
j and a

diagonal N×N matrix D(i, i) = ∑ j W (i, j), the problem can be rewritten as:

minimize : trace(Y T (D−W)Y ) (20)

sub ject to : Y (i, j) ∈ {−1,1}
Y T 1 = 0

Y TY = I

This is of course still a hard problem, but by removing the constraint that Y (i, j) ∈
{−1,1} an easier problem is obtained whose solutions are simply the b eigenvectors
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Fig. 12 Left: Eigenfunctions for a uniform rectangular distribution in 2D. Right: Thresholded
eigenfunctions. Outer-product eigenfunctions have a red frame. The eigenvalues depend on
the aspect ratio of the rectangle and the spatial frequency of the cut—it is better to cut the
long dimension first, and lower spatial frequencies are better than higher ones.

of D−W with minimal eigenvalue (after excluding the trivial eigenvector 1 which
has eigenvalue 0).

Out-of-Sample Extension. The out-of-sample extension of spectral methods is of-
ten solved using the Nystrom method [8, 21]. However, note that the cost of calcu-
lating the Nystrom extension of a new datapoint is linear in the size of the dataset.
With millions of items in the dataset this is impractical. In fact, calculating the Nys-
trom extension is as expensive as doing exhaustive nearest neighbor search.

In order to enable an efficient out-of-sample extension, the data points xxxi ∈ Rd

are assumed to be samples from a probability distribution p(xxx). The equations in
problem 19 above are now seen to be sample averages, which can be replaced by
their expectations:

minimize :
∫
‖yyy(xxx1)− yyy(xxx2)‖2W (xxx1,xxx2)p(xxx1)p(xxx2)dxxx1xxx2 (21)

sub ject to : yyy(xxx) ∈ {−1,1}b∫
yyy(xxx)p(xxx)dxxx = 0∫

yyy(xxx)yyy(xxx)T p(xxx)dxxx = I,

with W (xxx1,xxx2) = e−‖xxx1−xxx2‖2/ε2
. Relaxing the constraint that yyy(xxx) ∈ {−1,1}b results

in a spectral problem whose solutions are eigenfunctions of the weighted Laplace-
Beltrami operators defined on manifolds [15, 7, 8, 48].

What do the eigenfunctionsΨb(xxx) look like? One important special case is when
p(xxx) is a separable distribution. A simple case of a separable distribution is a multidi-
mensional uniform distribution p(xxx) =∏i ui(xxxi) where ui is a uniform distribution in
the range [ai, āi]. In the uniform case, the eigenfunctionsΨb(xxx) and eigenvaluesλb are:

Ψb(xxx) = sin(
π
2
+

bπ
ā−a

xxx) (22)

λb = 1− e−
ε2
2 | bπ

ā−a |2 . (23)

Figure 12 shows the analytical eigenfunctions for a 2D rectangle in order of increas-
ing eigenvalue. The eigenvalue (which corresponds to the cut) determines which
b bits will be used. Note that the eigenvalue depends on the aspect ratio of the
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Fig. 13 Left: results on 2D rectangles with different methods. Even though Spectral Hash-
ing is the simplest, it gives the best performance. Right: Similar pattern of results for a 10-
dimensional distribution.

Fig. 14 Comparison of neighborhood defined by Hamming balls of different radii using
codes obtained with vanilla LSH, Boosting, RBM, and Spectral Hashing when using 3, 7
and 15 bits. The yellow dot denotes a test sample. The red points correspond to the locations
that are within a Hamming distance of zero. Green corresponds to a Hamming ball of radius
1, and blue to radius 2.

rectangle and the spatial frequency—it is better to cut the long dimension before the
short one, and low spatial frequencies are preferred.

We distinguish between single-dimension eigenfunctions, which are of the
form Ψb(xxx1) or Ψb(xxx2) and outer-product eigenfunctions which are of the form
Ψb(xxx1)Ψl(xxx2). These outer-product eigenfunctions are shown marked with a red bor-
der in the figure. As we discuss below, these outer-product eigenfunctions should be
avoided when building a hashing code.

Summary of Algorithm. Recapping, given a training set of points {xxxi} and a de-
sired number of bits b, the steps of the Spectral Hashing algorithm are:

• Find the principal components of the data using PCA.
• Calculate the b smallest single-dimension analytical eigenfunctions of Lp using a

rectangular approximation along every PCA direction. This is done by evaluating
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the b smallest eigenvalues for each direction using (Eqn. 22), thus creating a list
of db eigenvalues, and then sorting this list to find the b smallest eigenvalues.

• Threshold the analytical eigenfunctions at zero, to obtain binary codes.

Illustrative Results. Figure 13(a) shows a comparison between Spectral Hash-
ing and Euclidean LSH, RBMs, and Boosting on a 2D rectangle of data. Despite
the simplicity of Spectral Hashing, it outperforms the other methods. Indeed, even
when we apply RBMs and Boosting to the output of Spectral Hashing the perfor-
mance does not improve. A similar pattern of results is shown for a 10D rectangle
(Figure 13(b)). Note that the Boosting and RBM methods were trained using the
approach described in Section 3.3.1 and Section 3.3.2, respectively, but using a dis-
tance matrix D= exp(−‖xxxi−xxx j‖2/ε2), instead of one produced by supervised label
information.

Some insight into the superior performance can be gained by comparing the par-
titions that each bit defines on the data (see Figure 12). Recall that we seek partitions
that give low cut value and are approximately independent. If simply using random
linear partitions, LSH can give very unbalanced partitions. RBMs and Boosting both
find good partitions, but the partitions can be highly dependent on each other. Spec-
tral Hashing finds well balanced partitions that are more compact than those of the
other methods, showing it makes efficient use of a given number of bits.

Figure 15 shows retrieval results for Spectral Hashing, RBMs, and Boosting on
the LabelMe dataset [65], using Gist descriptors as the input. Note that even though
Spectral Hashing uses a poor model of the statistics of the database—it simply as-
sumes a N-dimensional rectangle, it performs better than Boosting which actually
uses the distribution (the difference in performance relative to RBMs is not signif-
icant). Not only is the performance numerically better, but our visual inspection of
the retrieved neighbors suggests that with a small number of bits, the retrieved im-
ages are better using Spectral Hashing than with Boosting. However, Spectral Hash-
ing can only emulate the distance between Gist descriptors, as it has no mechanism
for using label information, whereas Boosting or RBMs do (see Section 3).

Fig. 15 Performance of different binary codes on the LabelMe dataset described in [65]. The
data is certainly not uniformly distributed, and yet Spectral Hashing gives better retrieval
performance than Boosting or vanilla LSH.
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4.3 Kernelized Locality Sensitive Hashing

Kernel functions are a valuable family of similarity measures, particularly since they
can support structured input spaces (sets, graphs, trees) and enable connections with
kernel learning algorithms. However, methods discussed thus far either assume that
the data to be hashed comes from a multidimensional vector space, or require that
the underlying embedding of the data be explicitly known and computable. For ex-
ample, Spectral Hashing assumes uniformly distributed data in Rd; the random hy-
perplane LSH function expects vector data [12]; and certain specialized embeddings
are manually crafted for a function of interest (Section 4.1).

This is limiting, given that many recent successful vision results employ kernels
for which the underlying embedding is known only implicitly (i.e., only the ker-
nel function is computable). This includes various kernels designed specifically for
image comparisons (e.g., [76, 77, 68]), as well as some basic widely used functions
like a Gaussian RBF kernel, or arbitrary (e.g., non-Mahalanobis) learned kernels.

Therefore, we next overview the kernelized locality-sensitive hashing (KLSH)
approach recently introduced by Kulis and Grauman [39], which shows how to con-
struct randomized locality-sensitive functions for arbitrary kernel functions. KLSH
generalizes LSH to scenarios when the kernel-induced feature space embedding is
either unknown or incomputable.

Main Idea. Formally, given an arbitrary (normalized) kernel function κ , we have

sim(xxxi,xxx j) =
κ(xxxi,xxx j)√

κ(xxxi,xxxi)κ(xxx j,xxx j)
(24)

=
φ(xxxi)

Tφ(xxx j)

‖φ(xxxi)‖2‖φ(xxx j)‖2
, (25)

for some (possibly unknown) embedding function φ(·). As usual, given a database
of n objects, the goal is to quickly find the most similar item to a query object qqq in
terms of the kernel function, that is, argmaxiκ(qqq,xxxi). Since we know that any Mercer
kernel can be written as an inner product in some high-dimensional space [62], at a
glance we might consider simply employing the random hyperplane hash functions
introduced earlier in Eqn. (5), which is locality-sensitive for the inner product.

However, looking more closely, it is unclear how to do so. The random hyper-
plane projections assume that the vectors are represented explicitly, so that the sign
of rrrT xxx can easily be computed. That would require referencing a random hyperplane
in the kernel-induced feature space, but we have access to the data only through
the kernel function κ(xxxi,xxx j) = φ(xxxi)

Tφ(xxx j). For example, the RBF kernel has an
infinite-dimensional embedding, making it seemingly impossible to construct rrr.
Thus the key challenge in applying LSH to this scenario is in constructing a vec-
tor rrr fromN (0, I) such that rrrTφ(xxx) can be computed via the kernel function.

The main idea of KLSH is to construct rrr as a weighted sum of a subset of the
database items, drawing on the central limit theorem. In doing so, like standard LSH,
hash functions are computed as random projections; however, unlike standard LSH,
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these random projections will be constructed using only the kernel function and a
sparse set of representative examples.

Algorithm. Consider each data point φ(xxxi) from the database as a vector from
some underlying distributionD with mean μ and covariance Σ , which are generally
unknown. Given a natural number t, define

zzzt =
1
t ∑i∈S

φ(xxxi), (26)

where S is a set of t database objects chosen i.i.d. from D. According to the central
limit theorem [54], for sufficiently large t, the random vector

z̃zzt =
√

t(zzzt − μ) (27)

is distributed according to the multi-variate Gaussian N (0,Σ). By applying a
whitening transform, the vector Σ−1/2z̃zzt will be distributed according to N (0, I),
precisely the distribution required for hashing.

Therefore, we denote our random vector as rrr = Σ−1/2z̃zzt , and the desired hash
function h(φ(xxx)) is given by

h(φ(xxx)) =
{

1, if φ(xxx)TΣ−1/2z̃zzt ≥ 0
0, otherwise

. (28)

Now the issue becomes how to express the product of the implicit random vector z̃zzt

and the matrix Σ−1/2 as a weighted sum of kernel-space instances.
To do this, KLSH uses a technique similar to that used in kernel Principal Com-

ponent Analysis (kPCA) [58] to project onto the eigenvectors of the covariance
matrix, as follows. Both the covariance matrix Σ and the mean μ of the data are
unknown, and must be approximated via a sample of the data. We choose a set of
p database objects, which we denote without loss of generality as the first p items
φ(xxx1), ...,φ(xxxp) of the database (where p� n), and assume to be zero-centered.
Now we may (implicitly) estimate the mean μ = 1

p ∑
p
i=1 φ(xxxi) and covariance ma-

trix Σ over the p samples. Define a kernel matrix K over the p sampled points, and
let the eigendecomposition of K be K =UΘUT . If the eigendecomposition of Σ is
VΛV T , then Σ−1/2 = VΛ−1/2V T . Therefore, we can rewrite the hash function as
follows:

h(φ(xxx)) = sign(φ(xxx)TVΛ−1/2V T z̃zzt). (29)

Note that the non-zero eigenvalues of Λ are equal to the non-zero eigenvalues of
Θ . Further, denote the k-th eigenvector of the covariance matrix as vvvk and the k-th
eigenvector of the kernel matrix as uuuk. According to the derivation of kernel PCA,
when the data is zero-centered, we can compute the projection

vvvT
k φ(xxx) =

p

∑
i=1

1√
θk

uuuk(i)φ(xxxi)
Tφ(xxx), (30)

where the φ(xxxi) are the sampled p data points.
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We complete the computation of h(φ(xxx)) by performing this projection over all
k eigenvectors, resulting in the following expression:

φ(xxx)TVΛ−1/2V T z̃zzt =
p

∑
k=1

1√
θk

vvvT
k φ(xxx)vvv

T
k z̃zzt . (31)

Substituting Eqn. 30 for each of the eigenvector inner products, we have

φ(xxx)TVΛ−1/2V T z̃zzt =
p

∑
k=1

1√
θk

( p

∑
i=1

1√
θk

uuuk(i)φ(xxxi)
Tφ(xxx)

)( p

∑
i=1

1√
θk

uuuk(i)φ(xxxi)
T z̃zzt

)
.

After reordering and simplifying, this yields

h(φ(xxx)) =
{

1, if ∑p
i=1 www(i)(φ(xxxi)

Tφ(xxx))≥ 0
0, otherwise

, (32)

where www(i) = ∑p
j=1∑

p
k=1

1

θ3/2
k

uuuk(i)uuuk( j)φ(xxx j)
T z̃zzt . See [39] for intermediate steps.

Hence, the desired Gaussian random vector can be expressed as rrr = ∑p
i=1 www(i)

φ(xxxi), that is, a weighted sum over the feature vectors chosen from the set of p
sampled database items.8 Then, given any novel input, the hash bit is assigned by
computing kernel values between the input and those sampled items.

Summary of Algorithm. Recapping, the kernelized locality-sensitive hashing al-
gorithm consists of the following steps:

• Select p data instances and form a kernel matrix K over this data.
• Center the kernel matrix.
• Form the hash table over the n � p database items: for each hash function

h j(φ(xxx)), select t indices at random from [1, . . . , p] to sample the implicit vector
z̃zzt , and use it to assign the next hash bit for each database instance xxx according to
h j(φ(xxx)) = sign(∑i www(i)κ(xxx,xxxi)).

• For each query, form its hash key using these same hash functions (same samples
of p and t indices) and employ existing LSH methods to find the approximate
nearest neighbors.

Matlab code for computing KLSH functions is available from the authors’ web-
sites [39].

Computational Complexity. The most expensive step in KLSH is in the single
offline computation of the kernel matrix square root, which takes time O(p3). Once
this matrix has been computed, each individual hash function requires O(p2) ker-
nel function evaluations to compute its corresponding www vector (also done offline).
Once www has been computed for a given hash function, the computation of the hash

8 Note that the random vector rrr constructed during the KLSH routine is only approximately
distributed according to N (0, I)—the central limit theorem assumes that the mean and
covariance of the data are known exactly, whereas KLSH employs an approximation using
a sample of p points.
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Fig. 16 Results using KLSH [39] to search the 80 Million Tiny Images data set (top left) and
Flickr scenes dataset (top right) with useful image kernels—a Gaussian RBF learned kernel
on Gist, and the χ2-kernel on local features, respectively. Top left: Plot shows how many
linear scan neighbors are needed to cover the first 10, 20, or 30 KLSH hashing neighbors.
The ideal curve would reach the top left corner of the plot. Top right: Plot shows k-nearest
neighbor accuracy of a linear scan and the KLSH algorithm as a function of LSH’s ε param-
eter, revealing how hashing accuracy approaches that of a linear scan for smaller values of
ε . Bottom: Example Tiny Image queries and the retrieved result using either a linear scan or
KLSH.

function can be computed with p evaluations of the kernel function. In order to
maintain efficiency, we want p to be much smaller than n—for example, p =

√
n

would guarantee that the algorithm maintains sub-linear search times. Empirical re-
sults for various large-scale image search tasks done in [39] suggest relatively few
samples are sufficient to compute a satisfactory random vector (e.g., p = 300 and
t = 30, for n up to 80 million).

Illustrative Results. Figure 16 shows some example results using KLSH for im-
age search. In both cases, kernels are employed that would not be supported by
any previous LSH algorithm. The example image retrievals show qualitatively that
KLSH often retrieves neighbors very similar to those of a linear scan, but does so by
searching less than 1% of the 80 Million images. At the same time, the quantitative
results show exactly how much accuracy is traded off. The 10-hashing NN’s curve
on the Tiny Images data (top left) shows, for example, that 100% of the neighbors
in KLSH’s top ten are within the top 50 returned with an exhaustive linear scan.
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4.4 Other Unsupervised Methods

A few other methods in the vision and learning literature tackle the problem of un-
supervised binary embeddings for different metrics. Most related to some of the
techniques here, Athitsos et al. [2, 3] propose a boosting-based approach which
gives a parametric function for mapping points to binary vectors, and can accom-
modate metric and non-metric target similarity functions. Salakhutdinov and Hinton
[56] use a neural network trained with an NCA objective [26] to build codes for text-
documents. Both these approaches are explored in Torralba et al. [65], as detailed
in Section 3.3.1 and Section 3.3.2, but with the similarity function being defined by
Euclidean distance rather than label overlap. Most recently, Kulis and Darrell [38]
use a kernel-based approach that jointly learns a set of projections that minimize
reconstruction error. This objective can be directly and efficiently minimized using
coordinate-descent.

5 Conclusions

We have reviewed a variety of methods for learning compact and informative binary
projections for image data. Some are purely unsupervised (e. g. Spectral Hashing),
but most can be applied in both supervised and unsupervised settings. As illustrated
by the results displayed in this chapter, they offer crucial scalability for useful image
search problems.

Despite their common goal, the approaches draw on a wide range techniques, in-
cluding random projections, spectral methods, neural networks, boosting, and kernel
methods. This diversity reflects the open nature of the problem and the extensive at-
tention it has received lately. We anticipate that advances in machine learning and
algorithms will continue to be relevant to this problem of great practical interest.
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Kulis, Antonio Torralba and Yair Weiss for their contributions to the work covered in the
chapter. They also thank the IEEE for permitting the reproduction of figures from the authors’
CVPR/ICCV/PAMI papers. Finally, thanks to the Flickr users kevgibbo, bridgepix, RickC, ell
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Bayesian Painting by Numbers: Flexible Priors
for Colour-Invariant Object Recognition

Jeroen C. Chua, Inmar E. Givoni, Ryan P. Adams, and Brendan J. Frey

Abstract. Generative models of images should take into account transformations
of geometry and reflectance. Then, they can provide explanations of images that are
factorized into intrinsic properties that are useful for subsequent tasks, such as object
classification. It was previously shown how images and objects within images could
be described as compositions of regions called structural elements or ‘stels’. In this
way, transformations of the reflectance and illumination of object parts could be
accounted for using a hidden variable that is used to ‘paint’ the same stel differently
in different images. For example, the stel corresponding to the petals of a flower
can be red in one image and yellow in another. Previous stel models have used a
fixed number of stels per image and per image class. Here, we introduce a Bayesian
stel model, the colour-invariant admixture (CIA) model, which can infer different
numbers of stels for different object types, as appropriate. Results on Caltech101
images show that this method is capable of automatically selecting a number of
stels that reflects the complexity of the object class and that these stels are useful for
object recognition.

1 Introduction

Vision can be thought of as inference in a learnt model of the relationships between
spatial patterns at different levels of abstraction. Marr [20] described three levels
of visual patterns: the primal sketch, corresponding to what an artist would draw
to represent parts of objects in a scene; the 2.5D sketch, which overlays the primal
sketch with textures, colours and shading; and the 3D model, which relates primal
and 2.5D sketches derived from different viewpoints and 3D manipulations. Two
extreme approaches to developing visual learning algorithms include using highly
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Fig. 1 Factorizing image explanations into intrinsic transformations. (a) A model is used to
generate a description of the appearance of a motorbike, which is then modified by transfor-
mations of geometry and reflectance to produce an instance. (b) This process can be formal-
ized by thinking of the observed image x as a random variable. It is assumed to have been
generated by applying an image-specific transformation T to a latent image z so as to change
various object properties, including reflectance and geometry. The parameter θ describes the
distribution over normalized latent images, z. (c) A dataset of M images x1, . . . ,xM is gen-
erated using corresponding latent images and transformations. Here, plate notation is used,
where variables within the box are replicated M times corresponding to the M images.

flexible, unstructured neural networks [10, 11, 27, 5], and using highly structured
techniques that hard-wire sensible rules for pattern generation [9, 21, 31]. In the case
of neural network approaches, the hope is that Marr’s different levels of patterns will
emerge after learning in a deep neural network, because they are the most efficient
way to model the statistics of images [10, 11]. In the case of methods using hard-
wired pattern rules, the hope is that a reasonably simple set of rules can be combined
with a straightforward inference algorithm to accurately describe the huge variation
seen in natural images [21].

We take an approach that combines the best aspects of the neural network and
pattern rule approaches, by exploring highly flexible statistical models that incor-
porate sensible pattern rules. The best known example of this approach is the con-
volutional neural network [17], which takes an image as input, propagates signals
through multiple layers of hidden variables, and then predicts the class of the ob-
ject in the image. The layers of variables are arranged according to the topology of
the input image, and each hidden variable receives input only from nearby variables
in the previous layer. This method achieves state-of-the-art performance on several
standard classification tasks [17]. In our approach, we recognize that in general the
number of labels that are available for training is exponentially smaller than the
number of possible pattern combinations. Therefore, we use statistical models of
the image data itself and train these models in an unsupervised fashion.
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(a) (b) (c)

Fig. 2 Attempting to detect object parts using image gradients. Two Caltech101 images (a)
were processed using a Canny edge detector with stringent (b) and liberal (c) thresholds.
Object parts are either not delineated or are delineated but accompanied by spurious irrelevant
edges.

Fig. 1 illustrates our approach, which was first described in [6, 13, 7, 14]. Varia-
tions due to object location, orientation, scale, reflectance and illumination are fac-
tored out and represented in a transformation variable T , and unsupervised learn-
ing methods are used to model the normalized, latent image z. From a generative
point of view, each image in the dataset is assumed to have been produced by
generating a latent image from the model p(z |θ ), randomly selecting a transfor-
mation T from p(T ), and then applying the transformation to obtain the observed
image according to the rendering model p(x |T,z). When an object is most naturally
described as a composition of articulating, deformable parts, the transformation T
should be factorized into a field of transformations where each sub-transformation
transforms an object part.

Here we attend to the vision problem of accounting for variability in reflectance
properties and illumination across object instances, so we will assume that all in-
stances of an object have similar geometry. Fig. 2(a) shows two motorbike images
from the Caltech101 dataset [18]. The motorbikes and the parts comprising them
have similar geometry, but quite different reflectance and illumination properties.
For example, a prominent difference between the two images is the colour of the
pipework; whereas the first motorbike has black pipework, the second motorbike
has light chrome pipework.

A popular standard approach to reducing sensitivity to variations in reflectance
and illumination is to pre-whiten images so as to emphasize edges [23]. Absolute
pixel intensities are discarded and instead only information about edges [2] or ori-
ented intensity gradients, such as those encoded by SIFT features [19], are used.
This approach produced state-of-the-art results on image classification problems in
the first decade of this century [16]. However, it is sensitive to parameters such as
the edge detector sensitivity, the patch size used to define SIFT features, thresholds
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on minimum gradients, the degree of contrast normalization, and so on. Figs. 2(b)
and 2(c) illustrate the difficulty in selecting thresholds for a Canny edge detector [2].
The more stringent threshold used in Fig. 2(b) leads to important edges being lost
in regions of low contrast, such as the gas tank in the top image and the pipework
in the bottom image. The more liberal threshold used in Fig. 2(c) leads to a large
number of spurious edges. The essential problem here is that it is not possible to
define beforehand an edge detection threshold that will differentiate all object parts
without also erroneously detecting edges due to noise.

A quite different approach to building robustness against variation in reflectance
and illumination was proposed in [15, 14]. They defined a ‘structure element’ (stel)
as a class-specific region in the image plane that can have different texture, shad-
ing and colour in different examples, but whose spatial structure is similar across
images. Stels correspond to regions in Marr’s primal sketch, which can be rendered
differently in different 2.5D sketches. Stels are identified by indices, so that the la-
tent image z in Fig. 1 is an image of stel indices. The latent image model p(z |θ )
provides a distribution over index maps. For the current image, T is a colour model
that specifies a distribution over colours for each stel index. Given the current index
map and colour model, a distribution over colours is specified for every pixel.

Stel models account for appearance in a way that factorizes out instance-specific
reflectance and illumination properties. Given a training set of images, the learnt
stel model segments images from an object class into different regions (stels) in a
colour-invariant way by modelling the co-occurrence of colours within an image and
spatial relationships across images within the object class. Pixels that are typically
the same colour and can be grouped into similar shapes across images are put into
a single stel, which loosely corresponds to an object part. Grouping pixels in this
way provides a class-specific bias for parts-based segmentation of training and test
images. In the context of object recognition, stel models provide a means to model
spatial relationships between oriented gradient features [15, 24].

Using the expectation-maximization (EM) algorithm described in [15], a single-
class model with nine stels was learnt from the five Caltech101 translation- and
scale-normalized images shown in Fig. 3(a). The image sizes were 75×132 and
they were converted to greyscale for analysis. Fig. 3(b) shows the nine stels, where
for each stel an image of probabilities that pixels belong to the stel are shown, with
white corresponding to a probability of one and black corresponding to a probability
of zero. Some stels, such as the stel in the middle row on the left, account for large
portions of pixels. Other stels, such as the one in the middle that accounts for the
front wheel disk, account for small portions of pixels. The three dominant stels are
shown in the left column.

Since stels are defined in a way that is similar to Marr’s definition of the pri-
mal sketch, an interesting question is whether the learnt stels can be used as a
primal sketch. Recall that the problem with the image-derived edge maps shown
in Figs. 2(b) and 2(c) is that it is not possible to pick a threshold that yields an
edge map that clearly delineates objects and parts, while at the same time not in-
troducing many erroneous edges. Since stels are required to be consistent across
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(a)

(b)

Fig. 3 The structure elements (stels) of motorbike images. Five images from the Caltech101
database (a) were used to learn nine stels (b). For each stel, an image of probabilities that
pixels belong to the stel is shown. The first stel accounts for the pipework, gas tank and rear
fender.

Fig. 4 Primal sketches derived from stels. These three edge maps were obtained from
smoothed versions of the three dominant stels shown in the left column of Fig. 3(b). They cor-
respond to ‘primal sketches’ of the motorbike outline, the wheels and seat, and the pipework
and gas tank.

images, can they be used to make primal sketches that account for object parts?
To answer this question, the three dominant stels were smoothed using a Gaussian
filter with σ = 1.5 and the MATLAB Canny edge detector was applied using default
settings. The resulting edge maps are shown in Fig. 4 and correspond to the overall
outline of the motorbike, the wheels and seat, and the pipework and gas tank.
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Since stel segmentations capture interesting spatial relationships within an object
class, they can be used in an object recognition framework by using the segmenta-
tions to encode the spatial configuration of local image features. It has been previ-
ously shown that recognition performance can be improved by incorporation of the
spatial relationships between features [24], in contrast to models based on bags of
visual words derived from, e.g., SIFT features.

A major drawback of current approaches to modelling with stels is that they
require the number of stels — the number of object parts for an object class — to
be fixed in advance. As it is difficult to determine a class-appropriate number of
stels a priori, this is an undesirable requirement. Using too few stels may result in
segmentations that are too coarse, while using an excessive number of stels may
lead to overfitting. Furthermore, differing poses and lighting conditions may call for
a different number of stels even within a single object class. This important free
parameter has typically been set by hand or by using computationally-expensive
cross-validation.

Here, we propose a Bayesian stel model that uses a prior distribution over the
assignment of pixels to stels to regularize the complexity of the stel segmentation.
After learning, the posterior distribution captures information about the appropriate
distribution over stels for a given set of data. We develop a framework for stels that
models images as an admixture, complementing other approaches, such as latent
Dirichlet allocation [1, 29, 28, 3].

2 The Colour-Invariant Admixture Model

One powerful approach to modelling data is to use an admixture, which captures
the idea that a given datum (e.g., an image) may be a combination of several la-
tent components. This idea has found wide use in the modelling of natural language
documents, where latent Dirichlet allocation (LDA) [1] provides a particularly con-
venient and elegant generative probabilistic model for exchangeable text data. When
considering the problem of vision from a modelling point of view, Marr’s notion of
a primal sketch maps well onto the admixture concept. Considering again the stel-
derived edge maps in Fig. 4, we can imagine that these sketches are blended together
to produce the observed image. Note that this is in contrast to a simple mixture
model, where images would result from precisely one of these three sketches.

In this section we develop a generative Bayesian variant of the stel model,
which we call the colour-invariant admixture (CIA) model. This model extends
the standard approach to stel modelling to enable representation of the full posterior
distribution over the stels. By combining the powerful ability to learn spatial rela-
tionships using stels, with the flexible invariance properties of a fully-probabilistic
latent colour model, CIA is able to learn image-specific properties of colour that
enable richer feature extraction for supervised learning tasks. Inference is straight-
forward, using Markov chain Monte Carlo.
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Fig. 5 Graphical model for the standard stel model

2.1 The Standard Stel Model

We first formally describe the standard stel model, as outlined in [15]. We assume
that there are M images, each with N pixels. We denote the nth pixel in the mth
image by xn,m, taking values in a colour space C, which we will take without loss of
generality to be R

D. We denote the collection of all pixel values across all images
by X = {{xn,m}N

n=1}M
m=1.

The standard stel approach associates with each pixel measurement xn,m a dis-
crete variable sn,m ∈ {1,2, . . . ,S}, which indicates the stel to which that pixel be-
longs. We denote this set of indices as Ξ = {{sn,m}N

n=1}M
m=1. A stel can be loosely

thought of as either a background model, or an object part. For instance, for the
motorcycle class, one stel may represent the wheels, another stel may represent the
pipework, and another stel may represent the background.

The main assumption of the stel model is that pixels belonging to the same stel
have high probability under a tight distribution defined on C. That is, the stel identity
of a pixel is highly informative about colour. The key insight is to allow these distri-
butions to vary across images, i.e., in image m, stel s has unique parameters φs,m. If
the observation model p(x |φ) is a Gaussian distribution on C, for example, then φs,m

would be mean and covariance parameters that are specific to the combination of s
and m. We denote the aggregate set of colour-distribution parameters for the training
images as Φ = {{φs,m}S

s=1}M
m=1.

The statistical sharing across images occurs through the per-pixel multinomial
distribution over the stel assignments, parameterized by θθθ n, where θs,n ≥ 0 and
∑s θs,n = 1. We denote the aggregate set of index distributions as Θ = {θθθn}N

n=1.
The standard stel graphical model is shown in Fig. 5.

Note that since each image can have unique colour distributions, the same object
part can have different colours in different images. Therefore, the inferred assign-
ments of stels will be invariant to colour in the sense that what matters is not the
specific colour, but colour co-occurrence. It is not necessary for object parts to be
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Fig. 6 Graphical model for CIA, where s indexes stels, n indexes pixels and m indexes
images.

of the same colour in all training images; all that is required is that object parts reg-
ularly co-occur in colour across images. Note, however, that the training set must
be normalized in position, orientation, and scale, since inference of stel assignments
is on a per-pixel basis, and the probability distributions θθθn are shared across all
images. It is possible to add in deformation variables to deal with, e.g., translation
and rotation. However, even without such deformation variables, the stel model is
capable of handling small amounts of deformation via soft stel assignments [24].

Learning of the parametersΘ and Φ can be performed via maximum likelihood
using the expectation maximization (EM) algorithm as in [15]. As the pixel-wise stel
distributions θθθ n are shared across the entire training set and are invariant to colour,
the stel model can provide a robust prior distribution over segmentation for a given
object class. Given a test image, the posterior stel segmentation can be efficiently
inferred, and this segmentation can be used for other tasks such as object recognition.

2.2 The Stel Model as a Generative Admixture

In practice, the performance of the stel model is very sensitive to the regularization
on Θ . Using too strong of a regularization results in coarse, uninformative image
segmentations, but allowing too much flexibility results in overfitting. To handle
this difficulty, we propose a Bayesian approach that is capable of maintaining a
full posterior distribution overΘ . This helps to relieve overfitting, but still results in
a flexible model. At test time, the uncertainty in the stel parameters can be taken into
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account when performing segmentation and object recognition. Additionally, this
approach enables CIA to be used as a module in larger hierarchical models with
little modification.

As before, sn,m ∈ {1,2, . . . ,S} is the stel assignment of pixel n in image m, and θθθ n

specifies the multinomial distribution over stel indices for pixel n. We will assume
that the pixel observation model is a Gaussian distribution with unknown mean and
covariance, i.e., φs,m = {μs,m,Λs,m}. We place a Dirichlet prior on the θθθn with base
measure γ . We place normal-inverse-Wishart (NIW) priors on the φs,m, with param-
eters α = {μ0,κ0,ν0,Λ0}. This leads to the following generative model:

θθθ n |γ ∼ Dirichlet(γ) (1)

sn,m |θθθ n ∼Multinomial(θθθn,1) (2)

φs,m |α ∼ NIW(μ0,κ0,ν0,Λ0) (3)

xn,m |sn,m,{φs,m}S
s=1 ∼ Norm(μsn,m,m,Λsn,m,m). (4)

The graphical model for this generative procedure is provided in Fig. 6. In this paper
we will use parameterization of the normal-inverse-Wishart given by [22]:

NIW(μ ,Σ |μ0,κ0,ν0,Λ0) =
|Λ0|ν0/2

2Dν0/2ΓD(ν0/2)(2π/κ0)D/2
|Σ |−(ν0+D)/2−1

× exp

{
−1

2
tr
(
Λ0Σ−1)− κ0

2
(μ− μ0)

TΣ−1(μ− μ0)

}
, (5)

where ΓD(·) is the generalized gamma function given by

ΓD(z) = πD(D−1)/4
D

∏
d=1

Γ
(

1
2
(2z+1−D)

)
. (6)

In this generative model, we are specifying a full joint distribution over the train-
ing images that possesses two different kinds of sharing across the data. In the first
case, all of the images (which are assumed to be from a single object class), share
the parameter θθθ n that provides the distribution over stels at the pixel level. How-
ever, each individual image can use different actual stel assignments to account for
variations in object boundaries, deformations, etc. Since the pixels within an image
are conditionally independent givenΘ and Φ , multiple stels can be represented in a
single image. This is the heart of the admixture idea. The second type of sharing is
within a single image: each image has its own unique set of distributions associated
with its colours. This enables robustness to variation in reflectance and illumination,
but supports the intuitive inductive bias that all the pixels for a single stel within an
image should have similar properties.
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2.3 Inference via Gibbs Sampling

Having specified a stel-based generative model, we can now examine the task of
learning, which in this case corresponds to finding the marginal posterior over the
stel distributions, given the data and hyperparameters:

p(Θ |X,γ,α) =
∫

dΦ
∫

dΞ p(Θ ,Φ,Ξ |X,γ,α). (7)

The integrals required to compute this marginal distribution are intractable, however.
We therefore take an approximate inference approach based on numerical integra-
tion via Markov chain Monte Carlo (MCMC). We begin by taking the generative
model specified in Eqs.(1)-(4) and constructing a joint distribution over the data and
the unknowns, given the hyperparameters γ and α:

p(X,Ξ ,Θ ,Φ |γ,α) ∝ p(Θ ,Φ,Ξ |X,γ,α). (8)

This distribution is proportional to the posterior distribution over all unknowns that
appears inside the integral in Eq. (7). Although we are primarily interested in Θ , by
examining the graphical model in Fig. 6, we observe that the posterior distribution
over Θ can be easily computed given Ξ and γ . Therefore, it is sufficient for our
purposes to generate samples from the posterior distribution over Ξ , marginalizing
over both Θ and Φ:

p(Ξ |X,γ,α) ∝ p(X,Ξ |γ,α) =
∫

dΦ
∫

dΘ p(X,Ξ ,Φ,Θ |γ,α). (9)

We further observe that the distribution in Eq. (9) factorizes as

=

∫
dΦ
∫

dΘ p(X |Ξ ,Φ) p(Ξ |Θ) p(Θ |γ) p(Φ |α)

=

[∫
dΦ p(X |Ξ ,Φ) p(Φ |α)

][∫
dΘ p(Ξ |Θ) p(Θ |γ)

]
. (10)

When constructing the generative stel model, we could have used various priors
for p(Φ |α) and p(Θ |γ). However, our specific choice of NIW and Dirichlet dis-
tributions, respectively, leads to analytic solutions for the two integral factors in
Eq. (10).

In the first case, we have∫
dΦ p(X |Ξ ,Φ) p(Φ |α) = p(X |Ξ ,α), (11)

which we recognize as the marginal likelihood of the data (the denominator of
Bayes’ theorem), as partitioned by the stel assignments Ξ . Our objective will be
to perform a Gibbs sweep over all assignments. To do this, we can factor Eq. (11)
into
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p(X |Ξ ,α) = p(xn�,m� |X/xn�,m� ,Ξ ,α) p(X/xn�,m� |Ξ ,α). (12)

The first factor is the posterior predictive distribution given all data except for
pixel n� in image m�. The second term is a constant which does not depend on
the pixel we are currently updating. To compute the predictive distribution for the
triplet of stel s, pixel n and image m, we begin by finding the sufficient statistics
of the data excluding pixel n in image m. Let δ (s,s′) be the Kronecker delta func-
tion, which takes value one if s and s′ are equal and zero otherwise. The sufficient
statistics are then:

Ns,n,m =
N

∑
n′ �=n

δ (s,sn′,m) (13)

x̄s,n,m =
1

Ns,n,m

N

∑
n′ �=n

δ (s,sn′ ,m)xn′,m (14)

X̄XXs,n,m =
1

Ns,n,m

N

∑
n′ �=n

δ (s,sn′ ,m)
[
(xn′,m− x̄s,n,m)(xn′,m− x̄s,n,m)

T
]
. (15)

Following the notation of [22], these statistics can be used to find the parameters of
the normal-inverse-Wishart posterior on the colour distribution:

κs,n,m = κ0 +Ns,n,m (16)

μs,n,m =
κ0

κ0 +Ns,n,m
μ0 +

Ns,n,m

κ0 +Ns,n,m
x̄s,n,m (17)

νs,n,m = ν0 +Ns,n,m (18)

Λs,n,m =Λ0 + X̄XXs,n,m +
κ0 Ns,n,m

κ0 +Ns,n,m
(x̄s,n,m− μ0)(x̄s,n,m− μ0)

T. (19)

These parameters also provide a closed form for the posterior predictive distribution,
which is a multivariate Student t-distribution:

p(xn�,m� |X/xn�,m� ,Ξ ,α) = tνs,n,m−D+1

(
μs,n,m,

Λs,n,m(κs,n,m +1)
κs,n,m(νs,n,m−D+1)

)
, (20)

where D is the dimensionality of the colour space, e.g., D = 3 for RGB and D = 1
for greyscale. The probability density function of the Student t-distribution is given
by

tν(x |μ ,Σ) = Γ (ν/2+D/2)
Γ (ν/2)

|Σ |−1/2

(πν)D/2

(
1+

1
ν
(x− μ)TΣ−1(x− μ)

)−(ν+D)/2

.

(21)
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In the second factor of Eq. (10), we are also computing a marginal likelihood:

p(Ξ |γ) =
∫

dΘ p(Ξ |Θ) p(Θ |γ)

=

∫
dΘ

N

∏
n=1

Γ
(
∑S

s=1 γs
)

∏S
s=1Γ (γs)

S

∏
s=1

θγs−1
s,n

M

∏
m=1

θδ (s,sn,m)
s,n . (22)

Introducing the sufficient statistic

ηs,n =
M

∑
m=1

δ (s,sn,m), (23)

we can rewrite Eq. (22) as a Dirichlet-multinomial (or Pólya) distribution:

p(Ξ |γ) =
∫

dΘ
N

∏
n=1

Γ
(
∑S

s=1 γs
)

∏S
s=1Γ (γs)

S

∏
s=1

θγs+ηs,n−1
s,n (24)

=
N

∏
n=1

∫
dθθθn

Γ
(
∑S

s=1 γs
)

∏S
s=1Γ (γs)

S

∏
s=1

θγs+ηs,n−1
s,n (25)

=
N

∏
n=1

Γ
(
∑S

s=1 γs
)

Γ
(
∑S

s=1 γs +ηs,n
) S

∏
s=1

Γ (γs +ηs,n)

Γ (γs)
. (26)

In order to Gibbs sample, we require the conditional distribution of a single assign-
ment sn,m given all the rest of Ξ . As in the NIW case, we can factorize the marginal
likelihood and compute the predictive sufficient statistics for each stel-image-pixel
triplet:

ηs,n,m =
M

∑
m′ �=m

δ (s,sn,m′ ) = ηs,n− δ (s,sn,m). (27)

The statistic ηs,n,m is the number of images for which pixel n has been assigned to
stel s, excluding image m. This leads to the posterior predictive for sn,m given all
other assignments:

p(sn,m = s |Ξ/sn,m,γ) =
ηs,n,m + γs

∑S
s′=1ηs′,n,m + γs′

. (28)

The overall Gibbs sampling update is then the product of the “prior” of the assign-
ment induced by the Dirichlet-multinomial predictive distribution in Eq. (28) and
the “likelihood” of the pixel intensity that results from the Student t-distribution:

p(sn,m = s |Ξ/sn,m,X,γ,α)

∝
ηs,n,m + γs

∑S
s′=1ηs′,n,m + γs′

tνs,n,m−D+1

(
μs,n,m,

Λs,n,m(κs,n,m +1)
κs,n,m(νs,n,m−D+1)

)
. (29)
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Finally, given a sample of Ξ from this Markov chain, we can compute the condi-
tional distribution over the stels Θ . These have a Dirichlet posterior distribution:

p(Θ |Ξ ,γ) =
N

∏
n=1

p(θθθn |{sn,m}M
m=1,γ)

=
N

∏
n=1

Γ
(
∑S

s=1ηs,n + γs
)

∏S
s=1Γ (ηs,n + γs)

S

∏
s=1

θηs,n+γs−1
s,n . (30)

2.4 Estimating the Posterior Distribution over Stels

CIA is an unsupervised learning model of image statistics. For practical discrimina-
tive tasks, however, we wish to use CIA to provide informative features. We do this
by constructing an estimate of the stel assignment probabilities Θ for each of the
object classes we wish to identify.

The richest representation of the posterior distribution is achieved by construct-
ing a mixture of Dirichlet distributions, where each component in the mixture is
parameterized as in Eq. (30) and weighted equally:

p(Θ |γ,α) ≈ 1
J

J

∑
j=1

N

∏
n=1

Γ
(
∑S

s=1η
( j)
s,n + γs

)
∏S

s=1Γ (η( j)
s,n + γs)

S

∏
s=1

θη( j)
s,n +γs−1

s,n , (31)

where η( j)
s,n denotes the jth sample of the assignments in the Markov chain from the

previous section.
From the point of view of feature-extraction, however, it may be more practical

to simply use a point estimate of Θ , denoted Θ̂ . One straightforward way to form
such a point estimate is to average the predictive distributions arising from Eq. (30)
as in

θ̂s,n =
J

∑
j=1

η( j)
s,n + γs

∑S
s′=1η

( j)
s′,n + γs′

. (32)

This uses the same η( j)
s,n samples as above. This point estimator is used for the ex-

periments in this paper, although with the additional aspect that γs is set to zero for
prediction. That is, the Dirichlet prior is used for training, but the predictions are not
smoothed. This helps identify which stels are actually represented in the data.

An astute reader will notice, however, that stel indices are non-identifiable, but
Eq. (32) implicitly assumes that stel indices are in fact identifiable across samples.
However, we note that in practice, after a sufficient burn-in period, stel indices ap-
pear to not change in between samples due to the extremely slow mixing of the
Gibbs sampler, and so practically, stel indices can be treated as identifiable across
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samples. A theoretically valid approach would be that of analyzing statistics of the
co-occurrence of stel membership assignments.

As we expect, some stels have a very small posterior for a given pixel. In fact,
some stels have a very small posterior across all pixels in all images. These stels can
be thought of the unused stels and their existence supports the notion that different
classes need a different number of stels.

Given the per-pixel posterior distribution, we retain only the stels that are “in
use” for the class. We define a stel to be in use if its total posterior distribution over
pixels is greater than 0.02. That is, a stel s is in use if

N

∑
n=1

θ̂s,n > 0.02. (33)

If there are C classes of interest, indexed by c, then the posterior for each pixel n
in class c is represented as an S(c)-dimensional vector, where S(c) is the number of
stels that are in use for class c.

Overall, the parameters we extract from the inference procedure across all classes
are the collection of Θ̂ (c) distributions for every pixel in every class, where the
dimension of Θ̂ (c) depends on the number of in use stels for class c. This set of
parameters is the output of the CIA model that we will use in order to extract useful
image representations for object recognition.

3 Using Stels for Supervised Learning Tasks

Stel models are density models of images and can be used for a wide variety of
vision tasks. For image classification, stel models can be used to define class-
conditional densities which are combined using Bayes’ rule to classify test images,
or stel models can be used to construct feature vectors that are fed into a discrimina-
tive learning algorithm. In Sect. 4, we report results on image classification using the
latter approach. For this purpose, we construct feature vectors (image descriptors)
in a way that is similar to the approach described in [24].

Stel models are used to define class-specific segmentations of images and those
segmentations are used to construct feature vectors consisting of a histogram of
SIFT codewords for each stel. In particular, we extract for any image (training or
testing) a descriptor based on the Θ̂ (c) distributions described above. The descriptor
can be easily used to calculate image similarities in a variety of ways. For example,
a kernel operator that is based on the histogram intersection kernel [8] can be used
to measure image similarity and a maximum-margin method such as the SVM can
be used for classification.

We define a discrete set of K visual feature codewords k ∈ {1,2, . . . ,K}. For in-
stance, to learn the codebook we can use the standard approach of extracting dense
SIFT features and clustering them. We can then pre-process each image by comput-
ing per-pixel visual features { fn ∈ {1,2, . . . ,K}}N

n=1.
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Now, given the feature index associated with each pixel n in the image, we con-
struct a per-class, per-stel count histogram of visual features:

h(c)s (k) =
N

∑
n=1

θ̂ (c)
s,n δ ( fn,k). (34)

We can define a concatenated histogram of features as

h(c) = [h(c)1 (1), . . . ,h(c)1 (K),h(c)1 (1), . . . ,h(c)2 (K), . . . ,h(c)
S(c)

(1), . . . ,h(c)
S(c)

(K)], (35)

where S(c) is the total number of stels used for object class c associated with the

image. Thus, this representation gives a vector h(c) ∈ R
S(c)×K , and we obtain a set

of C such vectors per image.
Using the histogram of features h(c), we define the class-specific similarity be-

tween two images, A and B, by the histogram intersection kernel [8]:

Ker(A,B) = min
k
[h(c)A (k),h(c)B (k)]. (36)

Note that using this stel kernel, one can better encode spatial relations. Rather than
collecting histograms over arbitrarily defined quadrants as in [16], we collect his-
tograms over stel segmentations, which provide useful spatial clues pertaining to the
identity of the object.

An orthogonal representation to the CIA representation above is that of the spatial
pyramid histogram of features [16], which is created by constructing a two-level
spatial pyramid histogram of visual features over the four image quadrants, as well
as the entire image. Note that the features can be created by a different codebook
from the one used to create the h(c) collection.

We also define a combined descriptor, that is created by appending the afore-
mentioned spatial pyramid descriptor to h(c). Thus, we obtain for every image a

collection of C feature vectors, h(c) ∈ R
S(c)×K+5K′ , where the 5K′ term comes from

the spatial pyramid descriptor. In our experiments, we do use the same codebook,
and K =K′. This representation can also be used in conjunction with the intersection
kernel above to give a per-class kernel based similarity measure.

4 Experimental Evaluation

To evaluate the usefulness of our approach, we conducted several experiments,
which we report in this section. We performed qualitative assessment by examining
whether our new method, CIA, results in stel-based representations of images with
varying levels of complexity as determined by the object class. We also performed
quantitative analyses to determine whether CIA results in features that improve per-
formance on object recognition tasks. Finally, we also are interested in how the
behavior of CIA changes when the free parameters of the prior are adjusted. We
investigated these properties using a subset of the Caltech101 image dataset.
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4.1 Experimental Setup

4.1.1 Data

We selected a subset of 28 classes from the popular Caltech101 dataset, by identify-
ing the 28 classes that had the largest number of examples per class. To balance class
sizes, we chose 30 images per class randomly. The class labels are aeroplane, mo-
torbike, background_Google, faces_easy, watch, leopard, bonsai, car_side, ketch,
chandelier, hawksbill, grand_piano, brain, butterfly, helicopter, menorah, kangaroo,
starfish, trilobite, buddha, ewer, sunflower, scorpion, revolver, laptop, ibis, llama and
minaret. Multiple training-testing trials were used to obtain confidence intervals. In
each trial, the 30 images in each class were randomly split into 15 training images
and 15 test images. Experimental results are reported based on averaging ten such
trials.

4.1.2 Image Preprocessing

The images were resized without cropping to be 50×50, and were converted to
greyscale, with the intensities scaled to the interval [0,1]. This corresponds to D = 1
in Eq. (21). Note that images were not whitened (as is common in other vision
approaches), since the CIA approach explicitly addresses invariance to colour.

4.1.3 Model Configuration

Unless otherwise specified, the maximum number of stels S was set to 12. The
experiments used hyperparameters of γ=0.8, Λ0=0.001, μ0=0.5, κ0=0.05, and
ν0=2.5. The Gibbs sampler was used to generate 1200 samples, after burning in for
1800 iterations.

4.1.4 Visual Feature (SIFT) Codebook

Following the approach of [16], we extracted 100,000 random SIFT features from
the training set using code obtained from [26], and learnt a codebook of K = 300
visual codewords using K-means.

4.2 Learning a Flexible Number of Stels

Our first concern is whether the additional flexibility of the CIA model actually
results in richer representations for different object classes. We gauged this by ex-
amining how many stels tend to be represented for each object class, when trained
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Fig. 7 A plot of the number of stels used by different Caltech classes. Error bars show the
standard deviation and the classes are sorted by the mean number of stels used.

using the same hyperparameters. For each class, we trained a stel model separately
and after training, the number of significant stels for each class, called ‘stel usage’,
was determined using the threshold described in Eq. 33. For every class, this proce-
dure was repeated ten times. We then examined the number of used stels per class
across the different classes, and we report results averaged across trials.

Fig. 7 shows the mean and standard deviation of stel usage for each class, where
the classes are sorted according to mean stel usage. Note that different classes use a
different number of stels and this number varies widely across classes. The models
that use the smallest number of stels on average correspond to the ibis, leopard
and starfish classes, whereas models that use the largest number of stels on average
correspond to the minaret, face and laptop classes.

Figs. 8 and 9 show stel probability maps extracted for every object class, using
one of the random trials. We examine in more detail three representative cases: the
face (Fig. 8(a)), watch (Fig. 8(b)), and motorbike (Fig. 8(c)) classes. As unused stels
(as determined by the aforementioned thresholding) are not shown, it is clear that
different objects are using different numbers of stels. One explanation for this may
be that different classes have different intrinsic complexities in the parts and colours
that comprise them. Alternatively, image classes that have many different poses,
deformations, or background clutter may require more stels. Faces appear to be an
example of this, since different stels are used to account for variations in expression,
hair style and background.

For additional insight, we also examine the per-class histograms over the number
of used stels, shown in Figs. 10 and 11. These histograms show the total number of
above-threshold stels represented by all images in the class. The histograms were
computed by aggregating all post burn-in samples from the Markov chain, across all
images in the class and for all trials. The differences between the results illuminate
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(a) Face (b) Watch

(c) Motorbike (d) Aeroplane

(e) Background (f) Bonsai

(g) Brain (h) Buddha

(i) Butterfly (j) Car Side

(k) Chandelier (l) Ewer

(m) Grand Piano (n) Hawksbill

Fig. 8 For each class, the stels learnt in a randomly selected trial are shown in order of de-
creasing probability mass. Some classes, such as faces, are modelled using a larger number of
stels, while other classes, such as chandeliers, are modelled using a smaller number of stels.
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(a) Helicopter (b) Ibis

(c) Kangaroo (d) Ketch

(e) Laptop (f) Leopard

(g) Llama (h) Menorah

(i) Minaret (j) Revolver

(k) Trilobite (l) Scorpion

(m) Starfish (n) Sunflower

Fig. 9 Continuation of Fig. 8.



108 J.C. Chua et al.

the flexibility of the CIA approach. In some classes, such as watch, the images are
effectively modelled using only about four stels, while in other classes, such as face,
the images typically require about eight stels.

4.3 Object Recognition Using CIA

In this section, we investigate whether our proposed method (CIA) can be used to
extract useful representations for object recognition. For each of the 28 classes, we
calculated the training-by-training, and training-by-test Gram matrices, based on
the descriptors introduced in Sect. 3, and using the intersection kernel as defined
in Eq. (36). Since there are 420 training images, and 420 test images in total, (28
classes with 15 images per class), each of these matrices is a 420× 420 matrix.
We trained a one-versus-all SVM classifier [25] using the 28 Gram matrices. These
experiments used publicly-available code from [16, 4].

One motivation for our Bayesian method is to enable flexibility in the effective
number of stels that are learnt. We hypothesized that this flexibility could lead to
better representations and thus better performance on classification tasks. Our first
comparison is therefore against the non-Bayesian counterpart for CIA, namely the
basic non-Bayesian stel model [12]. For the basic stel model, it is necessary to set
the number of stels in advance. This was done using leave-one-out cross-validation
on the training set, allowing for between four and twelve stels. The number of stels
was determined by the configuration which produced the best likelihood on held-out
validation data.

Overall, the basic stel model with cross-validation obtained 42% classification
accuracy, while our Bayesian method obtained 68% accuracy (see Table 1). Thus,
we have strong evidence to support the conclusion that the additional flexibility
leads to representations that are better for discrimination.

Next, we augmented the descriptor extracted using the Bayesian stel model with
a standard two level spatial pyramid descriptor, to see if the combined descriptor
would give improved performance. Including the spatial pyramid descriptor yields
a modest improvement, increasing the classification accuracy to 72%. While the
significance of this improvement is questionable (the standard deviation is about
2%), it may be explained by some classes not being very well modelled using the
stel model. Some classes, such as the background_Google and leopard classes, are
not well-segmented based on colour and shape co-occurrence. This prevents the stel
features from providing useful information. In this case, collecting image features
in the scheme of [16] provides the classifier with additional information that can
be used to improve performance. One way to view collecting image features over a
two-level spatial pyramid is that it augments our approach to fine-tune performance
on segmentation-unfriendly classes.

Finally, we ask whether our descriptors are comparable to the descriptors typ-
ically used for object recognition, based on spatial pyramids. We used the SIFT
descriptors over the image and image quadrants (the same representation we ap-
pended to our descriptor to obtain the augmented descriptor described above) in
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(a) Face
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(b) Watch
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(c) Motorbike
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(d) Aeroplane
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(e) Background
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(f) Bonsai
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(g) Brain
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(h) Buddha
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(i) Butterfly
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(j) Car Side
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(k) Chandelier
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(l) Ewer
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(m) Grand Piano
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(n) Hawksbill

Fig. 10 Per-class histograms of the number of stels used for all images and all trials.
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(a) Helicopter
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(b) Ibis
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(c) Kangaroo
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(d) Ketch
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(e) Laptop
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(f) Leopard
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(g) Llama
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(h) Menorah
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(i) Minaret

1 2 3 4 5 6 7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

Number of stels

F
ra

ct
io

n 
of

 ti
m

es
 u

se
d

(j) Revolver
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(k) Trilobite
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(l) Scorpion
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(m) Starfish
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(n) Sunflower

Fig. 11 Continuation of Fig. 10.
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conjunction with the intersection kernel. The achieved accuracy was 71%, which is
not statistically-significantly different from the result obtained using our method.

In summary, descriptors derived using our proposed method significantly im-
prove on the basic stel model. In particular, our method discovers segmentations
of object classes that are more conducive to object recognition. Additionally, our
method is competitive with standard SIFT-based spatial pyramid methods, and pro-
vides a very different approach to defining feature vectors.

Table 1 Classification results on a subset of 28 classes from Caltech101. The first two en-
tries were obtained using our proposed Bayesian method (CIA). The third entry follows the
method of [15], using a fixed number of stels per class that was chosen using cross-validation.
The fourth method is considered to be the state of the art and follows [16].

Method Accuracy (sd ∼ 2%)

Bayesian stel model (CIA) 68%
Bayesian stel model with spatial pyramid 72%
Basic stel model with cross-validated numbers of stels 42%
SIFT with spatial pyramid 71%

4.4 Effect of Hyperparameter Choices on Learnt Stels

An important question in the context of Bayesian inference is the sensitivity of in-
ferred models to the hyperparameter settings. While it is possible to infer or sample
them, we can obtain intuition and a better understanding of the model by considering
how the inferred model changes as a function of the hyperparameter settings.

In this section we report some of our findings when trying different parameter
settings for the greyscale version of the model. As the images are greyscale with
values in [0,1], the hyperparameter value for the mean, μ0, was not expected to be
particularly sensitive, and we set it throughout all experiments to be μ0=0.5. How-
ever, it was expected that the other normal-inverse Wishart parameters would have
an effect on the results. In the following experiments, we centred the hyperparam-
eters at a “reasonable” configuration and then perturbed them one at a time and to
examine the effects. The centre values are Λ0=0.001, μ0=0.5, κ0=0.1, ν0=3. We
examine the results of perturbing κ0, ν0, and Λ0.

4.4.1 Variation in κ0

In this set of experiments we considered the values κ0 ∈ {0.01,0.1,1}. Results are
shown in Fig. 12. We observe that for κ0=1, we obtain many similar stels that
tend to be below the threshold. As we lower κ0, we allow larger variations from
the prior mean. For represented stels with many pixels, however, the prior mean
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(a) Face (b) (c)

(d) Watch (e) (f)

(g) Motorbike (h) (i)

(j) Aeroplane (k) (l)

(m) Car Side (n) (o)

(p) Brain (q) (r)
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Fig. 12 Inferred stels for different settings of κ0 across columns. The other NIW parameters
are set to {μ0 = 0.5,Λ0 = 0.001,ν0 = 3}

has little effect; κ0 primarily changes the default colour distributions for below-
threshold stels. Figs. 12(s)-12(u) show contour plots for the normal-inverse Wishart
prior distribution on the mean and variance parameter of the colour model, for each
setting of κ0.
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(a) Face (b) (c)

(d) Watch (e) (f)

(g) Motorbike (h) (i)

(j) Aeroplane (k) (l)

(m) Car Side (n) (o)

(p) Brain (q) (r)
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Fig. 13 Inferred stels for different settings of ν0 across columns. The other NIW parameters
are set to {μ0 = 0.5,Λ0 = 0.001,κ0 = 0.1}

4.4.2 Variation in ν0

This set of experiments considered the values ν0 ∈ {2,3,5}. Results are shown in
Fig. 13. Increasing ν0 increases the effect of the prior covarianceΛ0. Given the prior
choice of Λ0, this results in narrower colour distributions and decreased flexibility
in what pixels each stel can explain. For example, in the faces shown in Fig. 13(c), a
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(a) Face (b) (c)

(d) Watch (e) (f)

(g) Motorbike (h) (i)

(j) Aeroplane (k) (l)

(m) Car Side (n) (o)
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Fig. 14 Inferred stels for different settings of Λ0 across columns. The other NIW parameters
are set to {μ0 = 0.5,κ0 =,ν0 = 3}

single stel cannot explain both the eyes and the face. Figs. 13(s)-13(u), show contour
plots for the normal-inverse Wishart prior distribution on the mean and variance
parameters of the colour model, as ν0 is varied.



Bayesian Painting by Numbers 115

4.4.3 Variation in Λ0

These experiments considered the values Λ ∈ {0.0001,0.001,0.01,}. Results are
shown in Fig. 14. This hyperparameter corresponds to the prior on the covariance.
Although this has a large effect on the normal-inverse-Wishart prior, there is little
sensitivity evident in the learnt stels. Figs.14(s)-14(s) show contour plots for the
normal-inverse Wishart prior distribution on the mean and variance parameters of
the colour model as Λ0 is varied.

5 Summary

We have introduced a novel generative Bayesian framework, the colour-invariant
admixture model (CIA), for generalizing stel models. This rectifies a previous weak-
ness in stel-based models, in which it is difficult to regularize the distribution over
stels. Our admixture-based approach represents the full posterior distribution over
stel parameters, enabling different numbers of stels to be represented to capture vari-
ation in object complexity. We have also introduced a straightforward Gibbs sampler
for performing inference in this model. Our empirical analyses demonstrate that CIA
is capable of learning varying complexity in stels for each class. Additionally, CIA
outperforms stel modelling approaches that require cross-validation, and performs
comparably to the popular SIFT-based pyramid matching.

CIA can be used to segment images in an unsupervised fashion, and we have
shown that this segmentation provides a rich backdrop on which to perform object
recognition. It robustly captures spatial relations between features, a crucial piece
of any foundation for state-of-the-art object recognition.

Although our approach provides a way of inferring a class-specific distribution
over the stels, our approach may still be sensitive the maximum number of stels S.
For instance, allowing a large number of stels to be used may result in “noisy” stels,
in which many stels are speckly and do not appear to represent meaningful struc-
ture. This free parameter is a difficult-to-avoid side-effect of this generative model.
One future direction for resolving this difficulty is to use a Bayesian nonparametric
approach in which an unbounded number of stels are allowed by the model, using,
for example, the hierarchical Dirichlet process [30].

In addition, patch-based models, such as convolutional neural networks, have re-
cently become popular in the vision community. An extension to this work is to
model an image as a collection of smaller patches, all of which use the same palette
to colour the image. Here, a vocabulary of patches, similar to Gabor filters, could
be learnt, and the types of patches used in an image could be used to discriminate
one class from another. For example, one patch from the vocabulary may repre-
sent the wheel of a motorbike, and so this type of patch being present twice in an
image could help distinguish between motorbikes and sunflowers, which have no
wheels.
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Real-Time Human Pose Recognition in Parts
from Single Depth Images

Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp,
Mark Finocchio, Richard Moore, Alex Kipman, and Andrew Blake

Abstract. This chapter describes a method to quickly and accurately predict 3D
positions of body joints from a single depth image, using no temporal information.
We take an object recognition approach, designing an intermediate body parts rep-
resentation that maps the difficult pose estimation problem into a simpler per-pixel
classification problem. Our large and highly varied training dataset allows the clas-
sifier to estimate body parts invariant to pose, body shape, clothing, etc.. Finally we
generate confidence-scored 3D proposals of several body joints by reprojecting the
classification result into world space and finding local modes of a 3D non-parametric
density. The system runs at around 200 frames per second on consumer hardware.
Our evaluation shows high accuracy on both synthetic and real test sets, and inves-
tigates the effect of several training parameters. We achieve state of the art accuracy
in our comparison with related work and demonstrate improved generalization over
exact whole-skeleton nearest neighbor matching.

1 Introduction

Robust interactive human body tracking has applications including gaming, human-
computer interaction, security, telepresence, and even health-care. The task has
recently been greatly simplified by the introduction of real-time depth cameras
[16, 19, 44, 37, 28, 13]. However, even the best existing systems still exhibit lim-
itations. In particular, until the launch of Kinect [21], none ran at interactive rates
on consumer hardware while handling a full range of human body shapes and sizes
undergoing general body motions. Some systems achieve high speeds by tracking
from frame to frame but struggle to re-initialize quickly and so are not robust. In
this chapter, we focus on pose recognition in parts: detecting from a single depth
image a small set of 3D position candidates for each skeletal joint. Our focus on
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per-frame initialization and recovery is designed to complement any appropriate
tracking algorithm [7, 39, 16, 42, 13] that might further incorporate temporal and
kinematic coherence. The algorithm presented here forms a core component of the
Kinect gaming platform [21].

depth image body parts 3D joint proposals 

Fig. 1 Overview. From an single input depth image, a per-pixel body part distribution is
inferred. (Colors indicate the most likely part labels at each pixel, and correspond in the joint
proposals). Local modes of this signal are estimated to give high-quality proposals for the 3D
locations of body joints, even for multiple users.

Illustrated in Fig. 1 and inspired by recent object recognition work that divides
objects into parts (e.g., [12, 43]), our approach is driven by two key design goals:
computational efficiency and robustness. A single input depth image is segmented
into a dense probabilistic body part labeling, with the parts defined to be spatially
localized near skeletal joints of interest. Reprojecting the inferred parts into world
space, we localize spatial modes of each part distribution and thus generate (possibly
several) confidence-weighted proposals for the 3D locations of each skeletal joint.

We treat the segmentation into body parts as a per-pixel classification task (no
pairwise terms or CRF have proved necessary). Evaluating each pixel separately
avoids a combinatorial search over the different body joints, although within a
single part there are of course still dramatic differences in the contextual appear-
ance. For training data, we generate realistic synthetic depth images of humans of
many shapes and sizes in highly varied poses sampled from a large motion cap-
ture database. We train a deep randomized decision forest classifier which avoids
overfitting by using hundreds of thousands of training images. Simple, discrimina-
tive depth comparison image features yield 3D translation invariance while main-
taining high computational efficiency. For further speed, the classifier can be run in
parallel on each pixel on a GPU [34]. Finally, spatial modes of the inferred per-pixel
distributions are computed using mean shift [10] resulting in the 3D joint proposals.
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An optimized implementation of our algorithm runs in under 5ms per frame (200
frames per second) on the Xbox 360 GPU, at least one order of magnitude faster
than existing approaches. It works frame-by-frame across dramatically differing
body shapes and sizes, and the learned discriminative approach naturally handles
self-occlusions and poses cropped by the image frame. We evaluate on both real
and synthetic depth images, containing challenging poses of a varied set of subjects.
Even without exploiting temporal or kinematic constraints, the 3D joint proposals
are both accurate and stable. We investigate the effect of several training parame-
ters and show how very deep trees can still avoid overfitting due to the large train-
ing set. We demonstrate that our part proposals generalize at least as well as exact
nearest-neighbor in both an idealized and realistic setting, and show a substantial
improvement over the state of the art. Further, results on silhouette images suggest
more general applicability of our approach.

Our main contribution is to treat pose estimation as object recognition using a
novel intermediate body parts representation designed to spatially localize joints of
interest at low computational cost and high accuracy. Our experiments also carry
several insights: (i) synthetic depth training data is an excellent proxy for real data;
(ii) scaling up the learning problem with varied synthetic data is important for high
accuracy; and (iii) our parts-based approach generalizes better than even an oracular
exact nearest neighbor.

1.1 Related Work

Human pose estimation has generated a vast literature (surveyed in [22, 29]). The
recent availability of depth cameras has spurred further progress [16, 19, 28]. Grest
et al. [16] use Iterated Closest Point to track a skeleton of a known size and starting
position. Anguelov et al. [3] segment puppets in 3D range scan data into head,
limbs, torso, and background using spin images and a MRF. In [44], Zhu & Fujimura
build heuristic detectors for coarse upper body parts (head, torso, arms) using a
linear programming relaxation, but require a T-pose initialization to size the model.
Siddiqui & Medioni [37] hand craft head, hand, and forearm detectors, and show
data-driven MCMC model fitting outperforms ICP. Kalogerakis et al. [18] classify
and segment vertices in a full closed 3D mesh into different parts, but do not deal
with occlusions and are sensitive to mesh topology. Most similar to our approach,
Plagemann et al. [28] build a 3D mesh to find geodesic extrema interest points
which are classified into 3 parts: head, hand, and foot. Their method provides both
a location and orientation estimate of these parts, but does not distinguish left from
right and the use of interest points limits the choice of parts.

Advances have also been made using conventional intensity cameras, though typ-
ically at much higher computational cost. Bregler & Malik [7] track humans using
twists and exponential maps from a known initial pose. Ioffe & Forsyth [17] group
parallel edges as candidate body segments and prune combinations of segments
using a projected classifier. Mori & Malik [24] use the shape context descriptor to
match exemplars. Ramanan & Forsyth [31] find candidate body segments as pairs
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of parallel lines, clustering appearances across frames. Shakhnarovich et al. [33] es-
timate upper body pose, interpolating k-NN poses matched by parameter sensitive
hashing. Agarwal & Triggs [1] learn a regression from kernelized image silhouettes
features to pose. Sigal et al. [39] use eigen-appearance template detectors for head,
upper arms and lower legs proposals. Felzenszwalb & Huttenlocher [11] apply pic-
torial structures to estimate pose efficiently. Navaratnam et al. [25] use the marginal
statistics of unlabeled data to improve pose estimation. Urtasun & Darrel [41] pro-
posed a local mixture of Gaussian Processes to regress human pose. Auto-context
was used in [40] to obtain a coarse body part labeling but this was not defined to
localize joints and classifying each frame took about 40 seconds. Rogez et al. [32]
train randomized decision forests on a hierarchy of classes defined on a torus of
cyclic human motion patterns and camera angles. Wang & Popović [42] track a
hand clothed in a colored glove. Our system could be seen as automatically infer-
ring the colors of an virtual colored suit from a depth image. Bourdev & Malik [6]
present ‘poselets’ that form tight clusters in both 3D pose and 2D image appearance,
detectable using SVMs.
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Fig. 2 Synthetic and real data. Pairs of depth image and ground truth body parts. Note wide
variety in pose, shape, clothing, and crop.

2 Data

Pose estimation research has often focused on techniques to overcome lack of train-
ing data [25], because of two problems. First, generating realistic intensity images
using computer graphics techniques [33, 27, 26] is hampered by the huge color and
texture variability induced by clothing, hair, and skin, often meaning that the data
are reduced to 2D silhouettes [1]. Although depth cameras significantly reduce this
difficulty, considerable variation in body and clothing shape remains. The second
limitation is that synthetic body pose images are of necessity fed by motion-capture
(mocap) data. Although techniques exist to simulate human motion (e.g., [38]) they
do not yet produce the range of volitional motions of a human subject.

In this section we review depth imaging and show how we use real mocap data,
retargetted to a variety of base character models, to synthesize a large, varied dataset.
We believe this dataset to considerably advance the state of the art in both scale and
variety, and demonstrate the importance of such a large dataset in our evaluation.
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2.1 Depth Imaging

Depth imaging technology has advanced dramatically over the last few years, finally
reaching a consumer price point with the launch of Kinect [21]. Pixels in a depth
image indicate calibrated depth in the scene, rather than a measure of intensity or
color. We employ the Kinect camera which gives a 640x480 image at 30 frames per
second with depth resolution of a few centimeters.

Depth cameras offer several advantages over traditional intensity sensors, work-
ing in low light levels, giving a calibrated scale estimate, being color and texture
invariant, and resolving silhouette ambiguities in pose. They also greatly simplify
the task of background subtraction which we assume in this work. But most impor-
tantly for our approach, it is straightforward to synthesize realistic depth images of
people and thus build a large training dataset cheaply.

2.2 Motion Capture Data

The human body is capable of an enormous range of poses which are difficult to
simulate. Instead, we capture a large database of motion capture (mocap) of human
actions. Our aim was to span the wide variety of poses people would make in an
entertainment scenario. The database consists of approximately 500k frames in a
few hundred sequences of driving, dancing, kicking, running, navigating menus,
etc..

We expect our semi-local body part classifier to generalize somewhat to unseen
poses. In particular, we need not record all possible combinations of the different
limbs; in practice, a wide range of poses proves sufficient. Further, we need not
record mocap with variation in rotation about the vertical axis, mirroring left-right,
scene position, body shape and size, or camera pose, all of which can be added in
(semi-)automatically.

Since the classifier uses no temporal information, we are interested only in static
poses and not motion. Often, changes in pose from one mocap frame to the next are
so small as to be insignificant. We thus discard many similar, redundant poses from
the initial mocap data using ‘furthest neighbor’ clustering [15] where the distance
between poses X1 and X2 is defined as max j ‖X j

1−X j
2‖2, the maximum Euclidean

distance over body joints j. We use a subset of 100k poses such that no two poses
are closer than 5cm.

We have found it necessary to iterate the process of motion capture, sampling
from our model, training the classifier, and testing joint prediction accuracy in order
to refine the mocap database with regions of pose space that had been previously
missed out. Our early experiments employed the CMU mocap database [9] which
gave acceptable results though covered far less of pose space.
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2.3 Generating Synthetic Data

We build a randomized rendering pipeline from which we can sample fully labeled
training images. Our goals in building this pipeline were twofold: realism and va-
riety. For the learned model to work well, the samples must closely resemble real
camera images, and contain good coverage of the appearance variations we hope to
recognize at test time. While depth/scale and translation variations are handled ex-
plicitly in our features (see below), other invariances cannot be encoded efficiently.
Instead we learn invariance from the data to camera pose, body pose, and body size
and shape.

The synthesis pipeline first randomly samples a set of parameters, and then uses
standard computer graphics techniques to render depth and (see below) body part
images from texture mapped 3D meshes. The mocap is retargetting to each of 15
base meshes spanning the range of body shapes and sizes, using [4]. Further slight
random variation in height and weight give extra coverage of body shapes. Other
randomized parameters include the mocap frame, camera pose, camera noise, cloth-
ing and hairstyle. We provide more details of these variations in the supplementary
material. Fig. 2 compares the varied output of the pipeline to hand-labeled real cam-
era images.

3 Body Part Inference and Joint Proposals

In this section we describe our intermediate body parts representation, detail the
discriminative depth image features, review decision forests and their application to
body part recognition, and finally discuss how a mode finding algorithm is used to
generate joint position proposals.

3.1 Body Part Labeling

A key contribution of this work is our intermediate body part representation. We
define several localized body part labels that densely cover the body, as color-coded
in Fig. 2. Some of these parts are defined to directly localize particular skeletal joints
of interest, while others fill the gaps or could be used in combination to predict
other joints. Our intermediate representation transforms the problem into one that
can readily be solved by efficient classification algorithms; we show in 4.3 that the
penalty paid for this transformation is small.

The parts are specified in a texture map that is retargetted to skin the various char-
acters during rendering. The pairs of depth and body part images are used as fully
labeled data for learning the classifier (see below). For the experiments in this chap-
ter, we use 31 body parts: LU/RU/LW/RW head, neck, L/R shoulder, LU/RU/LW/RW

arm, L/R elbow, L/R wrist, L/R hand, LU/RU/LW/RW torso, LU/RU/LW/RW leg, L/R
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(a) (b) 
 

 

 

 

Fig. 3 Depth image features. The yellow crosses indicates the pixel x being classified. The
red circles indicate the offset pixels as defined in Eq. 1. In (a), the two example features give
a large depth difference response. In (b), the same two features at new image locations give a
much smaller response.

knee, L/R ankle, L/R foot (Left, Right, Upper, loWer). Distinct parts for left and right
allow the classifier to disambiguate the left and right sides of the body.

Of course, the precise definition of these parts could be changed to suit a particu-
lar application. For example, in an upper body tracking scenario, all the lower body
parts could be merged. Parts should be sufficiently small to accurately localize body
joints, but not too numerous as to waste capacity of the classifier.

3.2 Depth Image Features

We employ simple depth comparison features, inspired by those in [20]. At a given
pixel x, the features compute

fθ (I,x) = dI

(
x+

u
dI(x)

)
− dI

(
x+

v
dI(x)

)
, (1)

where dI(x) is the depth at pixel x in image I, and parameters θ = (u,v) describe
offsets u and v. The normalization of the offsets by 1

dI(x)
ensures the features are

depth invariant: at a given point on the body, a fixed world space offset will result
whether the pixel is close or far from the camera. The features are thus 3D translation
invariant (modulo perspective effects). If an offset pixel lies on the background or
outside the bounds of the image, the depth probe dI(x′) is given a large positive
constant value.

Fig. 3 illustrates two features at different pixel locations x. Feature fθ1 looks
upwards: Eq. 1 will give a large positive response for pixels x near the top of the
body, but a value close to zero for pixels x lower down the body. Feature fθ2 may
instead help find thin vertical structures such as the arm.

Individually these features provide only a weak signal about which part of the
body the pixel belongs to, but in combination in a decision forest they are suffi-
cient to accurately disambiguate all trained parts. The design of these features was
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Fig. 4 Randomized Decision Forests. A forest is an ensemble of trees. Each tree consists
of split nodes (blue) and leaf nodes (green). The red arrows indicate the different paths that
might be taken by different trees for a particular input.

strongly motivated by their computational efficiency: no preprocessing is needed;
each feature need only read at most 3 image pixels and perform at most 5 arithmetic
operations; and the features can be straightforwardly implemented on the GPU.
Given a larger computational budget, one could employ potentially more power-
ful features based on, for example, depth integrals over regions, curvature, or local
descriptors e.g., [5].

3.3 Randomized Decision Forests

Randomized decision trees and forests [35, 30, 2, 8] have proven fast and effec-
tive multi-class classifiers for many tasks [20, 23, 36], and can be implemented
efficiently on the GPU [34]. As illustrated in Fig. 4, a forest is an ensemble of T
decision trees, each consisting of split and leaf nodes. Each split node consists of a
feature fθ and a threshold τ . To classify pixel x in image I, one starts at the root and
repeatedly evaluates Eq. 1, branching left or right according to the comparison to
threshold τ . At the leaf node reached in tree t, a learned distribution Pt(c|I,x) over
body part labels c is stored. The distributions are averaged together for all trees in
the forest to give the final classification

P(c|I,x) = 1
T

T

∑
t=1

Pt(c|I,x) . (2)

Training. Each tree is trained on a different set of randomly synthesized images.
A random subset of 2000 example pixels from each image is chosen to ensure a
roughly even distribution across body parts. Each tree is trained using the following
algorithm [20]:

1. Randomly propose a set of splitting candidates φ = (θ ,τ) (feature parameters θ
and thresholds τ).

2. Partition the set of examples Q = {(I,x)} into left and right subsets by each φ :

Ql(φ) = { (I,x) | fθ (I,x)< τ } (3)

Qr(φ) = Q\Ql(φ) (4)
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Fig. 5 Example inferences. Synthetic (top row); real (middle); failure modes (bottom). Left
column: ground truth for a neutral pose as a reference. In each example we see the depth
image, the inferred most likely body part labels, and the joint proposals show as front, right,
and top views (overlaid on a depth point cloud). Only the most confident proposal for each
joint above a fixed, shared threshold is shown.

3. Compute the φ giving the largest gain in information:

φ� = argmax
φ

G(φ) (5)

G(φ) = H(Q)− ∑
s∈{l,r}

|Qs(φ)|
|Q| H(Qs(φ)) (6)

where Shannon entropy H(Q) is computed on the normalized histogram of body
part labels lI(x) for all (I,x) ∈ Q.

4. If the largest gain G(φ�) is sufficient, and the depth in the tree is below a maxi-
mum, then recurse for left and right subsets Ql(φ�) and Qr(φ�).

To keep the training times down we employ a distributed implementation. Training
3 trees to depth 20 from 1 million images takes about a day on a 1000 core cluster.

3.4 Joint Position Proposals

Body part recognition as described above infers per-pixel information. This infor-
mation must now be pooled across pixels to generate reliable proposals for the po-
sitions of 3D skeletal joints. These proposals are the final output of our algorithm,
and could be used by a tracking algorithm to self-initialize and recover from failure.

A simple option is to accumulate the global 3D centers of probability mass for
each part, using the known calibrated depth. However, outlying pixels severely
degrade the quality of such a global estimate. Instead we employ a local mode-
finding approach based on mean shift [10] with a weighted Gaussian kernel.
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We define a density estimator per body part as

fc(x̂) ∝
N

∑
i=1

wic exp

(
−
∥∥∥∥ x̂− x̂i

bc

∥∥∥∥
2
)

, (7)

where x̂ is a coordinate in 3D world space, N is the number of image pixels, wic is a
pixel weighting, x̂i is the reprojection of image pixel xi into world space given depth
dI(xi), and bc is a learned per-part bandwidth. The pixel weighting wic considers
both the inferred body part probability at the pixel and the world surface area of the
pixel:

wic = P(c|I,xi) ·dI(xi)
2 . (8)

This ensures density estimates are depth invariant and gave a small but significant
improvement in joint prediction accuracy. Depending on the definition of body parts,
the posterior P(c|I,x) can be pre-accumulated over a small set of parts. For example,
in our experiments the four body parts covering the head are merged to localize the
head joint.

Mean shift is used to find modes in this density efficiently. All pixels above a
learned probability threshold λc are used as starting points for part c. A final con-
fidence estimate is given as a sum of the pixel weights reaching each mode. This
proved more reliable than taking the modal density estimate.

The detected modes lie on the surface of the body. Each mode is therefore pushed
back into the scene by a learned z offset ζc to produce a final joint position proposal.
This simple, efficient approach works well in practice. The bandwidths bc, proba-
bility threshold λc, and surface-to-interior z offset ζc are optimized per-part on a
hold-out validation set of 5000 images by grid search. (As an indication, this re-
sulted in mean bandwidth 0.065m, probability threshold 0.14, and z offset 0.039m).

4 Experiments

In this section we describe the experiments performed to evaluate our method. We
show both qualitative and quantitative results on several challenging datasets, and
compare with both nearest-neighbor approaches and the state of the art [13]. We
provide further results in the supplementary material. Unless otherwise specified,
parameters below were set as: 3 trees, 20 deep, 300k training images per tree, 2000
training example pixels per image, 2000 candidate features θ , and 50 candidate
thresholds τ per feature.

Test data. We use challenging synthetic and real depth images to evaluate our ap-
proach. For our synthetic test set, we synthesize 5000 depth images, together with
the ground truth body part labels and joint positions. The original mocap poses used
to generate these images are held out from the training data. Our real test set consists
of 8808 frames of real depth images over 15 different subjects, hand-labeled with
dense body parts and 7 upper body joint positions. We also evaluate on the real depth
data from [13]. The results suggest that effects seen on synthetic data are mirrored
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Fig. 6 Training parameters vs. classification accuracy. (a) Number of training images. (b)
Depth of trees. (c) Maximum probe offset.

in the real data, and further that our synthetic test set is by far the ‘hardest’ due to
the extreme variability in pose and body shape. For most experiments we limit the
rotation of the user to±120◦ in both training and synthetic test data since the user is
facing the camera (0◦) in our main entertainment scenario, though we also evaluate
the full 360◦ scenario.

Error metrics. We quantify both classification and joint prediction accuracy. For
classification, we report the average per-class accuracy, i.e., the average of the diag-
onal of the confusion matrix between the ground truth part label and the most likely
inferred part label. This metric weights each body part equally despite their varying
sizes, though mislabelings on the part boundaries reduce the absolute numbers.

For joint proposals, we generate recall-precision curves as a function of confi-
dence threshold. We quantify accuracy as average precision per joint, or mean av-
erage precision (mAP) over all joints.The first joint proposal within D meters of the
ground truth position is taken as a true positive, while other proposals also within
D meters count as false positives. This penalizes multiple spurious detections near
the correct position which might slow a downstream tracking algorithm. Any joint
proposals outside D meters also count as false positives. Note that all proposals
(not just the most confident) are counted in this metric. Joints invisible in the im-
age are not penalized as false negatives. We set D = 0.1m below, approximately
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the accuracy of the hand-labeled real test data ground truth. The strong correlation
of classification and joint prediction accuracy (c.f. the blue curves in Figs. 6(a) and
8(a)) suggests the trends observed below for one also apply for the other.

4.1 Qualitative Results

Fig. 5 shows example inferences of our algorithm. Note high accuracy of both clas-
sification and joint prediction across large variations in body and camera pose, depth
in scene, cropping, and body size and shape (e.g., small child vs. heavy adult). The
bottom row shows some failure modes of the body part classification. The first ex-
ample shows a failure to distinguish subtle changes in the depth image such as the
crossed arms. Often (as with the second and third failure examples) the most likely
body part is incorrect, but there is still sufficient correct probability mass in distri-
bution P(c|I,x) that an accurate proposal can still be generated. The fourth example
shows a failure to generalize well to an unseen pose, but the confidence gates bad
proposals, maintaining high precision at the expense of recall.

Note that no temporal or kinematic constraints (other than those implicit in the
training data) are used for any of our results. Despite this, per-frame results on video
sequences in the supplementary material show almost every joint accurately pre-
dicted with remarkably little jitter.

4.2 Classification Accuracy

We investigate the effect of several training parameters on classification accuracy.
The trends are highly correlated between the synthetic and real test sets, and the real
test set appears consistently ‘easier’ than the synthetic test set, probably due to the
less varied poses present.

Number of training images. In Fig. 6(a) we show how test accuracy increases
approximately logarithmically with the number of randomly generated training im-
ages, though starts to tail off around 100k images. As shown below, this saturation
is likely due to the limited model capacity of a 3 tree, 20 deep decision forest.

Silhouette images. We also show in Fig. 6(a) the quality of our approach on syn-
thetic silhouette images, where the features in Eq. 1 are either given scale (as the
mean depth) or not (a fixed constant depth). For the corresponding joint prediction
using a 2D metric with a 10 pixel true positive threshold, we got 0.539 mAP with
scale and 0.465 mAP without. While clearly a harder task due to depth ambiguities,
these results suggest the applicability of our approach to other imaging modalities.

Depth of trees. Fig. 6(b) shows how the depth of trees affects test accuracy using
either 15k or 900k images. Of all the training parameters, depth appears to have
the most significant effect as it directly impacts the model capacity of the classi-
fier. Using only 15k images we observe overfitting beginning around depth 17, but
the enlarged 900k training set avoids this. The high accuracy gradient at depth 20
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suggests even better results can be achieved by training still deeper trees, at a small
extra run-time computational cost and a large extra memory penalty. Of practical
interest is that, until about depth 10, the training set size matters little, suggesting an
efficient training strategy.

Maximum probe offset. The range of depth probe offsets allowed during training
has a large effect on accuracy. We show this in Fig. 6(c) for 5k training images,
where ‘maximum probe offset’ means the max. absolute value proposed for both x
and y coordinates of u and v in Eq. 1. The concentric boxes on the right show the 5
tested maximum offsets calibrated for a left shoulder pixel in that image; the largest
offset covers almost all the body. (Recall that this maximum offset scales with world
depth of the pixel). As the maximum probe offset is increased, the classifier is able to
use more spatial context to make its decisions, though without enough data would
eventually risk overfitting to this context. Accuracy increases with the maximum
probe offset, though levels off around 129 pixel meters.

4.3 Joint Prediction Accuracy

In Fig. 7 we show average precision results on the synthetic test set, achieving 0.731
mAP. We compare an idealized setup that is given the ground truth body part labels
to the real setup using inferred body parts. While we do pay a small penalty for using
our intermediate body parts representation, for many joints the inferred results are
both highly accurate and close to this upper bound. On the real test set, we have
ground truth labels for head, shoulders, elbows, and hands. An mAP of 0.984 is
achieved on those parts given the ground truth body part labels, while 0.914 mAP is
achieved using the inferred body parts. As expected, these numbers are considerably
higher on this easier test set.

Comparison with nearest neighbor. To highlight the need to treat pose recognition
in parts, and to calibrate the difficulty of our test set for the reader, we compare with
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Fig. 7 Joint prediction accuracy. We compare the actual performance of our system (red)
with the best achievable result (blue) given the ground truth body part labels.
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two variants of exact nearest-neighbor whole-body matching in Fig. 8(a). The first,
idealized, variant matches the ground truth test skeleton to a set of training exemplar
skeletons with optimal rigid translational alignment in 3D world space. Of course,
in practice one has no access to the test skeleton. As an example of a realizable
system, the second variant uses chamfer matching [14] to compare the test image
to the training exemplars. This is computed using depth edges and 12 orientation
bins. To make the chamfer task easier, we throw out any cropped training or test
images. We align images using the 3D center of mass, and found that further local
rigid translation only reduced accuracy.

Our algorithm, recognizing in parts, generalizes better than even the idealized
skeleton matching until about 150k training images are reached. As noted above,
our results may get even better with deeper trees, but already we robustly infer 3D
body joint positions and cope naturally with cropping and translation. The speed
of nearest neighbor chamfer matching is also drastically slower (2 fps) than our
algorithm. While hierarchical matching [14] is faster, one would still need a massive
exemplar set to achieve comparable accuracy.
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Fig. 8 Comparisons. (a) Comparison with nearest neighbor matching. (b) Comparison with
[13]. Even without the kinematic and temporal constraints exploited by [13], our algorithm
is able to more accurately localize body joints.

Comparison with [13]. The authors of [13] provided their test data and results
for direct comparison. Their algorithm uses body part proposals from [28] and fur-
ther tracks the skeleton with kinematic and temporal information. Their data comes
from a time-of-flight depth camera with very different noise characteristics to our



Real-Time Human Pose Recognition in Parts from Single Depth Images 133

structured light sensor. Without any changes to our training data or algorithm, Fig.
8(b) shows considerably improved joint prediction average precision. Our algorithm
also runs at least 10x faster.

Full rotations and multiple people. To evaluate the full 360◦ rotation scenario, we
trained a forest on 900k images containing full rotations and tested on 5k synthetic
full rotation images (with held out poses). Despite the massive increase in left-right
ambiguity, our system was still able to achieve an mAP of 0.655, indicating that
our classifier can accurately learn the subtle visual cues that distinguish front and
back facing poses. Residual left-right uncertainty after classification can naturally
be propagated to a tracking algorithm through multiple hypotheses. Our approach
can propose joint positions for multiple people in the image, since the per-pixel
classifier generalizes well even without explicit training for this scenario. Results
are given in Fig. 1 and the supplementary material.

Faster proposals. We also implemented a faster alternative approach to generating
the proposals based on simple bottom-up clustering. Combined with body part clas-
sification, this runs at ∼ 200 fps on the Xbox GPU, vs. ∼ 50 fps using mean shift
on a modern 8 core desktop CPU. Given the computational savings, the 0.677 mAP
achieved on the synthetic test set compares favorably to the 0.731 mAP of the mean
shift approach.

5 Discussion

We have seen how accurate proposals for the 3D locations of body joints can be esti-
mated in super real-time from single depth images. We introduced body part recog-
nition as an intermediate representation for human pose estimation. Using a highly
varied synthetic training set allowed us to train very deep decision forests using
simple depth-invariant features without overfitting, learning invariance to both pose
and shape. Detecting modes in a density function gives the final set of confidence-
weighted 3D joint proposals. Our results show high correlation between real and
synthetic data, and between the intermediate classification and the final joint pro-
posal accuracy. We have highlighted the importance of breaking the whole skeleton
into parts, and show state of the art accuracy on a competitive test set.

As future work, we plan further study of the variability in the source mocap data,
the properties of the generative model underlying the synthesis pipeline, and the
particular part definitions. Whether a similarly efficient approach that can directly
regress joint positions is also an open question. Perhaps a global estimate of latent
variables such as coarse person orientation could be used to condition the body part
inference and remove ambiguities in local pose estimates.
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Scale-Invariant Vote-Based 3D Recognition and
Registration from Point Clouds

Minh-Tri Pham, Oliver J. Woodford, Frank Perbet, Atsuto Maki,
Riccardo Gherardi, Björn Stenger, and Roberto Cipolla

Abstract. This chapter presents a method for vote-based 3D shape recognition and
registration, in particular using mean shift on 3D pose votes in the space of direct
similarity transformations for the first time. We introduce a new distance between
poses in this space—the SRT distance. It is left-invariant, unlike Euclidean distance,
and has a unique, closed-form mean, in contrast to Riemannian distance, so is fast
to compute. We demonstrate improved performance over the state of the art in both
recognition and registration on a (real and) challenging dataset, by comparing our
distance with others in a mean shift framework, as well as with the commonly used
Hough voting approach.

1 Introduction

This chapter concerns itself with vote-based pose estimation techniques. These arise
in many vision tasks including 2D object detection [21, 28, 37], motion segmenta-
tion [39, 40], and 3D shape registration and recognition [11, 20, 41]. These methods
all share a common two stage framework: First they generate an empirical distribu-
tion of pose through the collation of a set of possible poses, or votes. The votes are
often computed by matching local features from a test object to those in a library
with known pose [11, 20, 21, 28, 37, 39, 40, 41], or by learning a function that maps
features to votes [16, 29]. The second step is then to find one or more “best” poses in
the distribution (the maxima, in the case of ML/MAP estimation). This curation of
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Fig. 1 Our System. for 3D-shape-based object recognition and registration. (a) Real object,
fabricated from a CAD model. (b) Point cloud extracted using a multi-view stereo (MVS)
system. (c) Iso-surfaces of the scalar volume computed from the points. (d) Features (with
full scale, rotation and translation pose) detected in the volume. (e) Votes for the object centre,
based on detected features matched with a library of learnt features. (f) Local modes of the
votes. (g) The registered CAD model.

data prior to inference makes such vote-based approaches more efficient and robust
than competing techniques, e.g., global or appearance-based methods [26].

Two compelling methods in finding best poses are Hough voting and mean shift.
In Hough voting the standard approach is to compute the probabilities on a regular
grid over the pose parameter space. This discretization leads to loss of accuracy, as
well as a complexity exponential in the pose dimensionality, but ensures coverage of
the entire space. Mean shift [9] iteratively finds local maxima of probability, result-
ing in initialization issues but also high accuracy. The complexity of an iteration is
usually linear in the pose dimensionality. The two methods are therefore somewhat
complementary; indeed they are often used together [21, 28].

While Hough voting can be easily applied to any space (in our case that of
all poses), this is not straightforward for mean shift; each iteration requires the
computation of a weighted average of input votes, formulated as a least squares
minimization of distances from input votes to the mean. In Euclidean space this
minimization yields a unique, closed-form solution—the arithmetic mean. When
poses lie on a non-linear manifold this mean is typically outside the manifold,
requiring a projection onto it. A more direct approach is to minimize the geodesic
arclengths over the manifold, known as the Riemannian distance.
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requiring a projection onto it. A more direct approach is to minimize the geodesic
arclengths over the manifold, known as the Riemannian distance.

In this chapter we focus on 3D shape recognition and registration, as part of a
system (see Fig. 1) for recognizing industrial parts. However, unlike existing ap-
proaches, where objects of interest are of either fixed (or omitted) scale [40] or
rotation [21, 28, 37], here we recognize and register objects in the direct similarity
group: the group of isotropic similarity transformations parameterized by transla-
tion, rotation and scale [36]. Scale is necessary when the input data’s scale is un-
known, or when there is high intra-class scale variation. Rotation is necessary for
full registration, leading to more accurate recognition. The resulting 7D pose space
is currently too large to apply Hough voting to in practice [19]. Here we use mean
shift, for which scale and rotation also introduce problems using existing distances:
Euclidean distance is scale variant, and the induced mean of poses has a bias in
scale. The mean of poses using Riemannian distance has no closed-form solution,
even when the poses are pure rotations [25], and is slow to compute [38].

The contribution of this work is to introduce a new distance on the direct sim-
ilarity group. The distance provides scale, rotation and translation-invariance con-
comitantly. The weighted mean of this distance is unique, closed-form, and fast
to compute, as well as having several key properties discussed in Sect. 2.4.3. We
demonstrate the distance’s performance in mean shift, in the context of our 3D shape
registration and recognition system, comparing it with other distances on the same
space, as well as a Hough voting method.

The chapter is laid out as follows: The next section reviews the literature relevant
to 3D shape recognition and registration inference, as well as how our method is
positioned compared to existing approaches. In the following section, we introduce
our new distance on the direct similarity group, and its associated mean. In the final
two sections, we present our experiments, before concluding.

2 Background

We start with discussing two main trends in the literature: global approaches versus
local approaches, in which our method belongs to the latter. We then review how a
local appearance model is learned and used for generating votes from features in local
approaches. Our method extracts features using the standard Difference-of-Gaussian
(DoG) operator and matches features between the scene and the model to generate
votes. In the last part of the section, we review the inference techniques used for
vote-based pose estimation, and take a closer look at mean shift applied to this task.

2.1 Global Approaches vs. Local Approaches

Recognizing and registering rigid objects from 3D point clouds is a well-known
problem in computer vision [6, 22, 23]. Often, the 3D point clouds obtained by
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different sensors such as laser scans, time-of-flight cameras, or stereo systems [43]
contain small, irrelevant, neighbouring clutter in addition to the relevant data coming
from the objects.In most cases, the relevant data themselves do not capture full
shapes. Two main approaches to solve the problem are: global approaches and local
approaches. Global approaches recognize objects by relying on global features, i.e.,
features extracted from the complete 3D geometry of the point cloud. Examples
include spherical harmonics [18, 35], shape moments [35], and shape histograms
[29]. It is difficult to handle partial shapes using these approaches, since global
features are sensitive to both absence of shape parts and occurrence of clutter.

Recent works in 2D object detection and object class categorization [21, 28] have
shown the advantage of using local, rather than global, features in dealing with oc-
clusions and clutter. In 3D, similar success stories have been reported with methods
using local features [8, 15, 17, 20, 24, 41]. These approaches can integrate informa-
tion from a large number of object parts. They demonstrate good generalization as
they are free to combine parts observed on different training examples. Spin Images
by Johnson and Hebert [17] is arguably the most popular early work, in which local
3D descriptions are represented as 2D histograms of points falling within a cylin-
drical region by means of a plane that “spins” around the normal, and recognition is
done by matching spin images, grouping similar matches and verifying each output
pose. Many local features and descriptors have been proposed thereafter, with new
ones being more discriminative, more repeatable, more robust to noise and more
invariant to local rigid transformations. Chen and Bhanu [8] compute histograms
of normals and shape indices for describing local regions. The 3D Shape Context
of Frome etal. [15] extends Spin Images’ basic idea to computing 3D histograms
of points within a sphere around a feature point. Mian etal. [24] accumulate 3D
histograms of mesh triangles within a cubic support. Rusu etal. [34] propose Point
Feature Histograms describing the local geometry of a point and its k nearest neigh-
bours. Knopp etal. [20] extend the SURF descriptor from 2D to 3D and show how
3D shape recognition can be improved by a Hough-transform based approach. Pe-
trelli and Di Stefano [33] improve the repeatability of local reference frames via
point normals. Surveys of local features and descriptors 3D methods are available
in [6, 22, 23].

Many of these approaches share a common vote-based framework. They first
learn a local appearance model for the object classes to be recognized and registered,
which maps, either directly or indirectly, features to ground truth object identities
and poses. During inference, features from the scene point cloud are extracted. Via
the local appearance model, each of these features generates one or more votes, rep-
resenting hypotheses that an object of a given pose exists. The votes can be viewed
as points of a kernel density estimator that estimates the joint probability density
function of both object identity and pose. Local modes of the kernel density func-
tion are found via a suitable mode-seeking approach, and returned as final object
identities and poses. Methods such as Iterative Closest Point [5] and variants, are
able to further refine the output poses, if necessary.

Following these approaches, we use the standard vote-based framework in our
3D recognition and registration. However, our approach differs from existing
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approaches in that we infer simultaneously scale, rotation and translation in 3D.
Due to the introduction of scale, the pose space becomes too large (7D) for exist-
ing Hough transform-based approaches to work with, while existing mode-seeking
methods like mean shift have bias in scale, as to be seen in the following sections.

2.2 Learning a Local Appearance Model

2.2.1 Feature Extraction

Salient interest regions are extracted over location and scale from a variety of point
cloud instances of objects of the same class (in our case 20 point cloud instances
per class) using 3D interest point detectors like 3D SURF [20]. For each interest
region, i.e., a sphere centered at c with radius r, a 3D canonical orientation based
on the geometry of the points inside the region is computed, for example by finding
the principal directions of the points using PCA [24], or by fitting a local surface
and then finding most repeatable directions on the surface from the center of the
sphere [33]. A local reference frame is created as a result, hereinafter feature frame,
originating at c, with one unit length equal to r, and with 3D orientation coinciding
with the 3D canonical orientation. The feature frame is specified uniquely by a 3D
direct similarity transformation F ∈ S+(3) [36],

F =

[
s(F)R(F) t(F)

0T 1

]
, (1)

which converts the coordinates of a 3D point from the global coordinate system to
the feature frame. Here, s(F) ∈ R

+, R(F) ∈ SO(3,R) , and t(F) ∈ R
3 specify the

scale, rotation, and translation components of F, respectively. A low-dimensional
feature descriptor d ∈R

k (for some positive integer number k) is extracted based on
the distribution of the coordinates of the points inside the region with respect to F.

Each point cloud instance is associated with a local reference frame specifying
the ground truth pose of the object captured in the point cloud, hereinafter object
frame. Unlike most existing 3D approaches where an object pose specifies trans-
lation only [41], translation and scale [20], or translation and rotation [13], in our
system an object pose specifies scale and rotation and translation altogether, hence
dealing with a larger pose space than existing works. Here we treat scale as part of
an object pose and choose an object frame originating at the center location of the
object, with 3D orientation the same as the object’s orientation, and with one unit
length equal to the object scale. Analogously to the feature frames, an object frame
is specified uniquely by 3D direct similarity transformation X ∈ S+(3),

X =

[
s(X)R(X) t(X)

0T 1

]
, (2)
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Fig. 2 Effects of translation, rotation, and scale in transforming the pose of an object.

converting the coordinates of a 3D point from the global coordinate system to the
object frame. Since object frame and object pose are equivalent terms, from here
onwards they are used interchangeably.

An training feature consisting of a feature descriptor d, an object class identity
j ∈ {1, ..,J} (where J is the number of classes), and a feature-to-object transforma-
tion T = XF−1 is formed for each detected interest region. Note that although both
matrices F and X are computed from the global coordinate system, since the feature
frame is covariant to the object pose, the resultant feature-to-object transformation
T solely depends on the shape of the object. In other words, it is pose-invariant.

The collection of all training features extracted from every object class, denoted
as em = (dm, jm,Tm = XmF−1

m ) for m ∈ {1, ..,M} where M is the number of training
features, can be viewed as the local appearance model of the object classes.

2.2.2 Learning the Feature-to-Vote Mapping

Existing approaches differ in how the votes are generated from features extracted
from the scene, hereinafter scene features. There are three main approaches: (1)
direct matching of scene features with training features, (2) unsupervised clustering
of training features into visual words followed by matching of scene features with
visual words, and (3) supervised learning to directly map each scene feature to one
or more votes.

In approaches that match scene features with training features directly, all the
training features are kept as a library of exemplars. Hence, the cost for training is
very low. During inference, each scene feature f = (d

′
,F
′
) (with descriptor d

′
and

feature frame F
′
) is matched with every exemplar in the library and each match

generates a vote. In Tombari and Di Stefano’s work [41], matching of f with an
exemplar em is done by thresholding the Euclidean distance ‖dm−d′‖ with a prede-
fined threshold ε . If it is a match, i.e., ‖dm−d′‖< ε , a vote for an object of class jm
at pose TmF

′
is generated. Drost etal. [11] use hashing to match a feature descriptor

with model descriptors instead. A vote may optionally have a weight to reflect the
relative matching score and other prior probabilities, as shown in, for instance, the
work of Knopp etal. [20]. It makes sense to use TmF

′
to predict the object pose,
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since if we transform the object specified by em, albeit unknown, so that the feature
used for the construction of em aligns perfectly with f , i.e., Fm = F

′
, the transformed

object pose must be TmF
′
.

Since matching every scene feature with every training feature is a time-costly
process, it may be beneficial to group training features of similar descriptors coming
from the same class into a visual word using an unsupervised clustering approach
[20, 21]. Such a strategy would reduce the number of exemplars in the library, hence
increasing the matching efficiency. However, the sizes of the clusters must be chosen
carefully, or the false positive rate may increase [21, 41].

In 2D object recognition, the idea of grouping training features of similar appear-
ances is advanced further, by using discriminative and supervised clustering rather
than unsupervised clustering, allowing one to optimize the visual words to produce
more reliable votes in the vote space. Gall and Lempitsky [16] train a Hough forest
that maps a feature directly to multiple votes. However, each node of their Hough
tree is trained to either minimize the class uncertainty or the pose uncertainty. Okada
[27] instead introduces a combined objective function for training a node. Both
methods have shown significant improvements over the unsupervised approach of
Leibe etal. [21].

It would be tempting to apply this idea to 3D. However, an immediate challenge
is how to model uncertainty of a set of 3D poses. In 2D, Gall and Lempitsky work
with 2D center points, and Okada works with 2D points plus scale, the variance
of which is sufficient to model the uncertainty. In our case, the existence of both
3D rotation and scale makes the pose space a non-linear manifold. Any uncertainty
measurement based on the notion of Euclidean distance, including variance, would
have a bias in scale, as to be discussed in Sect. 2.4.1.

In our approach, we use a standard feature extraction process, as described in
Sect. 4. Similar to Tombari and Di Stefano [41], we use the dataset of training fea-
tures as the local appearance model without clustering them into visual words. As
the scope of this work is to introduce a distance that is efficient and more impor-
tantly, unbiased by scale, the task of modeling pose uncertainty, and subsequently
supervised learning of visual words, is left for future work.

2.3 Finding Local Modes in the Vote Space

The inference stage involves the computation of local maxima of the joint kernel
density function p( j,X) of object identity j ∈ {1, ..,J} and pose X ∈ S+(3) repre-
sented by a set of (weighted) votes generated from an input point cloud. Since j
is a discrete variable, we can search for local maxima in each of the J conditional
distributions p(X| j) instead. Without loss of generality, let us assume the form of
p(X| j) as:

p(X| j) =
Nj

∑
i=1

λiH(X,Xi) (3)
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Table 1 Methods of pose estimation over different transformations. t: translation; R: rotation;
s: scale. *Indicates 2D space.

t t, s t, R t, R, s

Hough [41] [20] [13] [19]
Mean shift – [21, 28, 37]* [40] [39]*, This work

where Nj denotes the number of votes for class j, H(·, ·) denotes a kernel function,
and with respect to the ith vote for class j, λi ≥ 0 denotes the weight and Xi ∈ S+(3)
denotes the predicted pose. Here, the weights are normalized, i.e., ∑iλi = 1, so
that p(X| j) is a proper probability density function. Although we are concerned
with 3D transformations, the discussion in the remainder of the chapter assumes
n-dimensional transformations for an arbitrary n > 0.

Two main techniques for finding modes of p(X| j) are Hough voting (an extension
of the Generalized Hough Transform [4]) and mean shift [9].

In Hough voting, the input space is partitioned into a finite number of L bins,
i.e., S+(n) =

⋃L
l=1 Bl where Bi ∩B j = /0 for all i �= j. For each bin Bl , the weights

of the votes with poses belonging to Bl are summed up. Modes are found by re-
turning bins with largest sums of weights. Using Hough voting, Khoshelham [19]
quantizes the 7D space of 3D translation, rotation and scale for object registration.
This creates a trade-off between pose accuracy and computational requirements,
the latter proving to be costly. Other methods seek to reduce this complexity by
shrinking the pose space and marginalizing over some parameters. Fisher etal. [13]
quantize translations and rotations in two separate 3D arrays; peak entries in both
arrays indicate the pose of the object, but multiple objects create ambiguities. Knopp
etal. [20] show effective object recognition using Hough voting over 3D translation
and scale. Tombari and Di Stefano [41] first compute Hough votes over translation,
assuming known scale in their 3D object recognition and registration application,
then determine rotation by averaging the rotations at each mode. Geometric hash-
ing [11, 24] is a similar technique to Hough voting which reparameterizes pose in
a lower dimensional space before clustering. However, all these dimensionality re-
duction techniques lead to an increased chance of false positive detections. Another
issue with Hough voting is that it returns bins, not poses, as output. One still needs a
way to select the best pose, or to compute a representative pose, for each output bin.

Mean shift avoids the trade-off suffered by Hough voting methods, being both
accurate and having lower (usually1 linear) complexity in the pose dimensional-
ity, making it suitable for inference in the full 7D pose space of the direct similarity
group in 3D. To date it has been used in 2D applications: object detection over trans-
lation and scale [21, 28, 37], and motion segmentation over affine transformations
[40], as well as in 3D for motion segmentation over translation and rotation [39].
Mean shift relies on a kernel function typically in the form,

1 Certain distance computations are not linear, e.g., that of Sect. 2.4.2.
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H(X,Xi) =
1
ζ

K(d2(X,Xi)), (4)

where d(·, ·) is a distance function and K(·) is a non-negative non-increasing uni-
variate function, and ζ is a normalization factor so that H(·,Xi) is a proper probabil-
ity density function. Choosing the distance function d(·, ·), is crucial for mean shift
as it directly changes the locations and the number of the output modes. On non-
Euclidean spaces, even the Euclidean distance yields undesired behaviours as to be
shown in Sect. 2.4. This is the first contribution we know of to apply mean shift
to a 3D application using translation, rotation and scale simultaneously. A reason
this has not done before could be the problems associated with computing means
using existing Euclidean and Riemannian distances in the direct similarity group
S+(n). We now review mean shift in more details and discuss distance functions in
this space. In what follows, we omit index j since it is clear from the context that j
is given.

Algorithm 1. Mean shift [9] (for notation see text)

Require: X = {Xi,λi}N
i=1, distance function d(·, ·)

1: Initialize X
2: repeat
3: Xold := X
4: wi := λiK(d2(X,Xi)) ∀i = 1, ..,N
5: X := argminX∑i wid2(X,Xi)
6: until d(Xold,X)< ε
7: return X

2.4 Mean Shift

The mean shift algorithm [9] (Algorithm 1) is a popular algorithm for finding local
modes by coordinate ascent in kernel density estimation. Given a distance function
d(·, ·) on the input space, the kernel density estimator is given by

f̂K(X) =
N

∑
i=1

1
ζ
λiK(d2(X,Xi)), (5)

where X is the random variable,X = {Xi,λi}N
i=1 is a set of input points with weights

λi ≥ 0, K(·)≥ 0 is a kernel function, and ζ is a volume density function which nor-
malizes K(d2(·,Xi)). The most common (and our) choice for K(·) is the Gaussian

kernel, exp
(
− ·

2σ2

)
, where σ is the bandwidth of the kernel. On Euclidean spaces

a natural choice for d() is the Euclidean distance, dE(); e.g., if X and Y are matri-
ces, dE(X,Y) = ‖X−Y‖F where ‖·‖F is the Frobenius norm. Under the Euclidean
distance, the solution of step 5 in Algorithm 1,
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Fig. 3 Scale bias of the extrinsic mean. Let us consider S+(2) (without translation): on a
plane, a rotation can be represented as a point on a circle, the radius being the scale. Left: with
rotation only, the arithmetic mean of A and B leads to a smaller scale but the reprojection onto
the manifold (i.e., the unit circle) gives a reasonable result. Right: with rotation and scale, the
mean is already on the manifold, but with a smaller scale.

μ(X ) = argmin
X

∑
i

wid
2(X,Xi), (6)

also known in the literature as a Fréchet mean [14], becomes an arithmetic mean,
i.e., μ(X ) = ∑i wiXi

∑i wi
.

In pose estimation, votes are represented by linear transformations which form a
matrix Lie group. This chapter is concerned with the direct similarity group S+(n)⊂
GL(n+1,R), which is the set of all affine transformation matrices X∈ S+(n) acting
on R

n preserving angles and orientations [36]. When applying mean shift on a ma-
trix Lie group, the choice of d() is crucial since it affects both the computation of
weights and the mean (steps 4 & 5 of Algorithm 1). Two well-known distances arise
in the literature: Euclidean and Riemannian. We now review how existing methods
utilize these distances in mean shift on matrix Lie groups.

2.4.1 Euclidean Distance

Given a matrix Lie group G ⊂ GL(n,R), since GL(n,R) ⊂ R
n2

(up to an isomor-
phism), the most straightforward way to apply mean shift on G is to run Euclidean
mean shift on R

n2
instead. However, at each iteration the arithmetic mean may not

lie in G. It is therefore projected back to G via the mapping:

π : Rn2 →G : π(X) = argmin
Y∈G

‖Y−X‖2
F . (7)

The projected arithmetic mean, μ(X ) = π
(
∑i wiXi
∑i wi

)
, is referred to in the literature

as the extrinsic mean [25, 38].
Mean shift using Euclidean distance (extrinsic mean shift) has shown good re-

sults on Stiefel and Grassmann manifolds [7]. However, there are two drawbacks
with extrinsic mean shift applied to S+(n). First, dE() is invariant to rotation and
translation but not to scaling, making the weights, wi, computed by mean shift scale
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Fig. 4 The intrinsic mean. Three poses in S+(3) (with different scales, rotations and transla-
tions) and their intrinsic mean (pink). The geodesics between the mean and input poses are
also drawn. Note that the shortest distance between two transformations is not necessarily a
straight line in terms of translation.

variant. Thus, although the extrinsic mean is scale-covariant,2 extrinsic mean shift is
not. Second, the extrinsic mean of rotation and scale transformations causes a bias
towards smaller scales, as illustrated in Fig. 3.

2.4.2 Riemannian Distance

An alternative choice for d() is the Riemannian distance. dR(). Given X,Y ∈ S+(n),
dR(X,Y) is defined as the arclength of the geodesic between X and Y, i.e., the short-
est curve along the manifold connecting X and Y (see Fig. 4). In general dR (X,Y)
is difficult to compute, but if Y is located within the open neighbourhood bounded
by the cut locus of X in S+(n) (defined in [31]) then dR (X,Y) =

∥∥logm
(
X−1Y

)∥∥
F,

where logm(·) is the matrix logarithm. This requirement is not too restrictive in
practice; in S+(n) the rotation angle should not reach π radians [45]. For example,
in SO(2,R) the cut locus of X is just a single point:−X [25].

Since dR() depends only on the intrinsic geometry of G, the Fréchet mean (i.e.,
mean defined as the solution of Eq. (6)) using dR() is called the intrinsic mean
[25, 31]. Efficient formulations of dR() exist for some G, notably SE(3) [2], which
can be adapted to S+(3). However, in S+(n) for n> 3, dR() generally has no efficient
formulation, taking O(n4) time to compute [10].

Intrinsic mean shift methods have been proposed [7, 40]. The intrinsic mean itself
has multiple non-closed-form solutions [25]; in our experiments we compute an
approximation using a single step3 of the iterative method of [40].

2 Scale-covariant means a scale transformation of input data produces the same transforma-
tion on the output.

3 This is equivalent to computing a mean using the log-Euclidean distance [3], d(X,Y) =
‖logm(X)− logm(Y)‖F.
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2.4.3 Properties of a Good Distance in S+(n)

In the context of mean shift, and subsequent to our overview of Euclidean and Rie-
mannian distances, we propose the following list of desirable properties for a dis-
tance in S+(n) and its associated mean:

1. Unique: The mean should have a unique solution.
2. Closed-form: For efficient computation, the mean should have a closed-form

solution.
3. Scale-compatible: If all rotations and translations are equal, the mean should be-

have as an average of the scales. Mathematically, if ∀Xi ∈X : R(Xi) =R′, t(Xi) =
t′ for some R′ and t′, then we would like R(μ(X )) = R′, t(μ(X )) = t′, and
s(μ(X )) to be an average of s(Xi)’s. In this case, we say that μ is scale-compatible.

4. Rotation-compatible: If ∀Xi ∈ X : s(Xi) = s′, t(Xi) = t′, then s(μ(X )) = s′,
t(μ(X )) = t′ and R(μ(X )) is an average of R(Xi)’s.

5. Translation-compatible: If ∀Xi ∈ X : s(Xi) = s′, R(Xi) = R′, then
s(μ(X )) = s′, R(μ(X )) = R′ and t(μ(X )) is an average of t(Xi)’s.

6. Left-invariant: A left-invariant distance is one that is unchanged by any post-
transformation, i.e., d(ZX,ZY) = d(X,Y) ∀X,Y,Z ∈ S+(n). This property is
crucial for two reasons: (a) it leads to a left-covariant mean: μ(ZX ) = Zμ(X ),4
i.e., if all poses Xi are transformed by Z, the mean is transformed by Z as well,
and (b) it ensures that the weights wi computed in mean shift are invariant to any
post-transformation Z, leading to left-covariant mean shift.

A symmetric distance, s.t. d(X,Y) = d(Y,X) ∀X,Y ∈ S+(n), intuitively seems de-
sirable, but its absence does not prevent a distance from being used in mean shift
and furthermore, given the properties listed, it is not necessary. In other words, we
do not require the distance function to be a metric. Right-invariance might also be
considered a desirable property, but in the context of 3D recognition this occurrence
does not relate to any meaningful behaviour.

3 The SRT Distance and Its Mean

In this section, we describe our new distance on S+(n), which fulfills all the desir-
able properties defined in Sect. 2.4.3. We call it the SRT distance, with correspond-
ing mean μSRT.

3.1 Distance Definition

We first define the following component-wise distances:

ds(X,Y) =

∣∣∣∣log

(
s(X)

s(Y)

)∣∣∣∣ , (8)

4 ZX = {ZX : X ∈ X } is a left coset of X . Proof in [32, Append. A.4].
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Table 2 Properties of distances and associated means in S+(n). †The approximation of [40]
is, however, unique and translation compatible.

Properties Extrinsic Intrinsic SRT

Distance:
Symmetric � � �

Left-invariant � � �

Mean:
Unique � �† �

Closed-form � � �

Scale-compatible � � �

Rotation-compatible � � �

Translation-compatible � �† �

dr(X,Y) = ‖R(X)−R(Y)‖F , (9)

dt(X,Y) =
‖t(X)− t(Y)‖

s(Y)
, (10)

in which ds(), dr() and dt() measure scale, rotation and translation distances respec-
tively, with X and Y in S+(n). Given some bandwidth coefficients σs,σr,σt > 0, the
SRT distance is defined as:

dSRT(X,Y) =

√
d2

s (X,Y)

σ2
s

+
d2

r (X,Y)

σ2
r

+
d2

t (X,Y)

σ2
t

. (11)

By controlling σs,σr,σt , it is possible to create an SRT distance that is more sen-
sitive to one type of transformations among scale, rotation, and translation than the
others. In this sense, the SRT distance is more flexible than the Euclidean and Rie-
mannian distances.

We now prove that the SRT distance possesses the most crucial property, the 6th
property in the list.

Theorem 1. dSRT() is left-invariant.

Proof. The main idea involves showing that dSRT() is related to a pseudo-seminorm
on S+(n), i.e., dSRT(X,Y) =

∥∥Y−1X
∥∥

SRT, where

‖·‖SRT =

√
log2(s(·))

σ2
s

+
‖R(·)− I‖2

F

σ2
r

+
‖t(·)‖2

σ2
t

. (12)
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Indeed, for all X,Y ∈ S+(n), the transformation Y−1X consists of:

s
(
Y−1X

)
=

s(X)

s(Y)
, (13)

R
(
Y−1X

)
= RT (Y)R(X), (14)

t
(
Y−1X

)
=

RT (Y)(t(X)− t(Y))

s(Y)
. (15)

Applying the ‖·‖SRT norm on Y−1X yields:

∥∥Y−1X
∥∥2

SRT =
1
σ2

s
log2

(
s(X)

s(Y)

)
+

1
σ2

r

∥∥RT (Y)R(X)− I
∥∥2

F ,

+
1

σ2
t

∥∥∥∥RT (Y)(t(X)− t(Y))

s(Y)

∥∥∥∥
2

. (16)

Since the Frobenius norm is rotation invariant, the second and third terms of the
right-hand side of Eq. (16) may be rewritten as:

1
σ2

r

∥∥RT (Y)R(X)− I
∥∥2

F =
1
σ2

r
‖R(X)−R(Y)‖2

F , (17)

1

σ2
t

∥∥∥∥RT (Y)(t(X)− t(Y))

s(Y)

∥∥∥∥
2

=
1

σ2
t

∥∥∥∥ t(X)− t(Y)

s(Y)

∥∥∥∥
2

. (18)

proving dSRT(X,Y) =
∥∥Y−1X

∥∥
SRT. It follows that:

dSRT(X,Y) =
∥∥Y−1X

∥∥
SRT =

∥∥(X−1
i Z−1)(ZX)

∥∥
SRT = dSRT(ZX,ZY), (19)

proving dSRT() is left invariant. ��
Note that, unlike dE() and dR(), dSRT() is not symmetric; it could be made symmet-
ric by a slight modification of the translation component, but at the expense of the
translation-compatibility of the corresponding mean.

3.2 Mean Computation

Having defined dSRT(), we now derive the Fréchet mean μSRT using dSRT(), which
is:

μSRT(X ) = argmin
X∈S+(n)

∑
i

wid
2
SRT(X,Xi). (20)

and show that it is closed-form5 and generally unique.

5 Our close-form notion includes matrix singular-value decomposition.
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Theorem 2. The solution of Eq. (20), the SRT mean, is given as:

s(μSRT(X )) = exp

(
∑i wi logs(Xi)

∑i wi

)
, (21)

R(μSRT(X )) = sop

(
∑i wiR(Xi)

∑i wi

)
, (22)

t(μSRT(X )) = ∑
i

wit(Xi)

s2(Xi)

/
∑

i

wi

s2(Xi)
(23)

where sop(X) = argminY∈SO(n,R) ‖Y−X‖F is the orthogonal projection of ma-
trix X onto SO(n,R). Additionally if X is singular-value decomposed into X =
Udiag(λ1 . . . ,λn)VT for some orthogonal matrices U,V ∈ O(n,R) and singular
values λ1 ≥ . . .≥ λn ≥ 0. the function sop(X) computes

sop(X) = Udiag(1, ..,1,det(UV))VT. (24)

The SRT mean is unique if and only if all the singular values are distinct.

Proof. The sum in Eq. (20) can be rewritten as

∑
i

wid
2
SRT(X,Xi) =

Fs(X)

σ2
s

+
Fr(X)

σ2
r

+
Ft(X)

σ2
t

, (25)

where6 F�(X) = ∑N
i=1 wid2

�(X,Xi). Since s(X) only appears in Fs(X), we can refor-
mulate

s(μSRT(X )) = argmin
s(X)∈R+

∑
i

wi log2
(

s(X)

s(Xi)

)
, (26)

yielding the solution (21). Similarly, since t(X) only appears in Fr(X), after
rewriting

t(μSRT(X )) = argmin
t(X)∈Rn

∑
i

wi
‖t(X)− t(Xi)‖2

s2(Xi)
, (27)

we get Eq. (23) as the solution. Finally, since R(X) only appears in Fr(X), we rewrite

R(μSRT(X )) = argmin
R(X)∈SO(n,R)

∑
i

wi ‖R(X)−R(Xi)‖2
F . (28)

This is precisely Moakher’s definition of Euclidean (extrinsic) mean of 3D rota-
tion matrices [25, def. 5.1] generalized to n-dimensional rotation matrices. Moakher
proves that for the case of n = 3 [25, Sect. 3.1],

R(μSRT(X )) = sop(R) = argmin
Y∈SO(n,R)

∥∥Y−R
∥∥

F , (29)

6 � should be replaced with s, r or t.
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where R = ∑i wiR(Xi) , by showing that

∑
i

wi ‖R(X)−R(Xi)‖2
F =

(
∑

i
wi

)∥∥R(X)−R
∥∥2

F +∑
i

wi
∥∥R−R(Xi)

∥∥2
F . (30)

which is straightforwardly generalized to the case of n �= 3.
Finding sop(R) when n = 3 is studied in [12, 25]. Here, we generalize the results

to SO(n,R). First, let the singular value decomposition of R be

R = Udiag(λ1..,λn)VT, (31)

for some orthogonal matrices U,V ∈ O(n,R) and unique (but not necessarily dis-
tinct) singular values λ1 ≥ . . . ≥ λn ≥ 0. Considering a change of variable R

′
=

UTR(X)V , we get:

UTRV = diag(λ1..,λn) , (32)∥∥R(X)−R
∥∥2

F =
∥∥∥UT

(
R(X)−R

)
V
∥∥∥2

F
=
∥∥∥R

′ −diag(λ1 . . . ,λn)
∥∥∥2

F
. (33)

Thus, minimizing
∥∥R(X)−R

∥∥2
F with respect to R(X) is equivalent to minimiz-

ing f (R
′
) =

∥∥∥R
′ −diag(λ1..,λn)

∥∥∥2

F
with respect to R

′
. Here, R

′ ∈ O(n,R) and

det(R
′
) = det(UV). Rewriting function f (R

′
):

f (R
′
) = trace

(
I−2R

′Tdiag(λ1..,λn)+ diag2 (λ1 . . . ,λn)
)

(34)

=
n

∑
i=1

(
1−2R

′
i,iλi +λ 2

i

)
, (35)

we can see that only the diagonal elements of R
′

are involved in f (R
′
). Therefore,

the optimal R
′

must be a diagonal orthogonal matrix. Among all the diagonal or-
thogonal matrices available in O(n,R) (there are 2n in total), the one that minimizes
f (R

′
) and has det(R

′
) = det(UV), considering that λn is the smallest singular value,

is given by
R′ = diag(1, ..,1,det(UV)) . (36)

In other words,
sop(R) = Udiag(1, ..,1,det(UV))VT. (37)

We now analyze the uniqueness of sop(R). First, if some singular values are not
distinct, i.e., λk = λk+1, then the kth and (k + 1)th columns of matrices U and V
of Eq. (31) become non-unique, making sop(R) non-unique. Second, in the case
that all the singular values are distinct, if λn > 0 then both U and V are unique,
making sop(R) unique. If λn = 0, the nth column of U and the nth column of V can
both be negated while still satisfying Eq. (31) (their directions are fixed by other
columns). However, sop(R) remains unchanged due to the simultanous negation of
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both singular vectors. Therefore, sop(R) is unique if and only if all the singular
values of R are distinct. ��
It can be further verified that μSRT(X ) is:

1. Scale-compatible: The scale component s(μSRT(X )) is a geometric mean of
s(Xi)’s.

2. Rotation-compatible: The rotation component R(μSRT(X )) is an extrinsic mean
of R(Xi)’s.

3. Translation-compatible: The translation component t(μSRT(X )) is an arithmetic
mean of t(Xi)’s.

Table 2 summarizes the desirable properties of the SRT distance and mean, and
contrasts them with those of the Euclidean and Riemannian distances.

3.3 SRT Mean Shift

We form our mean shift algorithm on S+(n) using dSRT() and μSRT(X ) in steps 4 &
5 of Algorithm 1 respectively. It follows from the left-invariance of dSRT that SRT
mean shift is left-covariant.

The coefficients σ s,σ t ,σ r act in place of the kernel bandwidth σ in Eq. (5). Also
note that, while the coefficient ζ is constant in Euclidean space, it is not constant in
a non-Euclidean space, in which case ζ = ζ (Xi) [30, 40] cannot be factored out of
the kernel density estimate. Since ζ (Xi) can be costly to compute (sometimes non-
closed-form), existing mean shift algorithms on Lie groups [7, 40] replace ζ (Xi)
with a constant. However, in the case of dSRT(), indeed any left-invariant distance,
it can be shown that ζ (Xi) is constant:

Lemma 1. Using dSRT, the volume densities are constant: ∀X,Y ∈ S+(n) : ζ (X) =
ζ (Y).

Proof. The volume density function ζ (Y) with respect to the SRT distance and
kernel K(·) at transformation Y is given by:

ζ (Y) =

∫
S+(n)

K
(
d2

SRT(U,Y)
)

dν(U), (38)

where ν(U) is a (left-)Haar measure on S+(n) [30]. ν(U) has a property that
dν(U) = dν(ZU) for all Z ∈ S+(n). Let us fix Z = XY−1. Since dSRT() is left-
invariant, using the substitute V = ZU and left-multiplying both input arguments of
dSRT() with Z, we obtain:

ζ (Y) =
∫

S+(n)
K
(
d2

SRT(Z
−1V,Y)

)
dν(V)

=

∫
S+(n)

K
(
d2

SRT(V,ZY)
)

dν(V) = ζ (X). (39)

Therefore, ζ (X) is constant for all ∀X ∈ S+(n). ��
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4 Experiments

4.1 Experimental Setup

Our experimental data consists of 12 shape classes, for which we have both a phys-
ical object and matching CAD model. We captured the geometry of each object
using Vogiatzis and Hernández’s multi-view stereo method [43] in the form of point
clouds (Fig. 1(b)), 20 times from a variety of poses. Along with the class label,
every shape instance has an associated ground truth pose, computed by first approx-
imately registering the relevant CAD model to the point cloud manually, then using
the Iterative Closest Point algorithm [5] to refine the registration.

4.1.1 Pose Vote Computation

Given a test point cloud and set of training point clouds (with known class and pose),
the computation of input pose votes X is a two stage process similar to [20, 41]. In
the first stage, local shape features, consisting of a descriptor and a scale, translation
and rotation relative to the object, are computed on all the point clouds (Fig. 1(c)).
In the second stage each test feature is matched to the m (we use 20) nearest training
features, in terms of Euclidean distance between descriptors, to generate m pose
votes.7

4.2 Inference

4.2.1 Mean Shift

Mean shift finds a local mode, and its weight, in the output pose distribution for a
given object class. Since there may be many such modes we start mean shift from
100 random input poses for each class. Each mode, duplicates excepted, is then
added to a list of candidate poses across all classes.

In S+(3) it is possible to use the quaternion representation of rotation, q(X),
which we do. For efficiency, we therefore alternatively define the rotation compo-
nent of dSRT() as

dr(X,Y) =
√

1−|q(X)Tq(Y)|, (40)

where | · | is needed to account for the fact that q(X) and −q(X) represent the same
rotation. This formulation confers a small computational advantage over other, non-
component-wise distances in this space.

7 Since all inference methods will use the same set of input pose votes, the method by which
these are computed is not central to the evaluation of relative performance.
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4.2.2 Hough Voting

We implemented a published Hough voting scheme [20] to compare with the mean
shift inference approaches. This computes sums of weights of the pose votes which
fall into each bin of a 4D histogram over translation and scale, effectively marginal-
izing over rotation. The highest bin sum for each class defines a pose mode. Note
that we used our own pose votes and weights, and not those computed using the
method described in [20].

4.3 Evaluation

We use cross validation on our training data for evaluation—a training set is cre-
ated from 19 of the 20 shape instances in each class, and the remaining instance
in each class becomes a test shape. Each test shape undergoes 5 random transfor-
mations (over translation, rotation and scale in the range 0.5–2), and this process is
repeated with each training shape being the test shape, creating 100 test instances
per class. We use 10 classes in our evaluation (shown in Fig. 5), so 1000 tests in
all. The remaining 2 classes are used to learn the optimal kernel bandwidth, σ ,
for each inference method. We have made the data used in this evaluation publicly
available [1].

We evaluate each inference method on two criteria: Recognition rate and regis-
tration rate.

4.3.1 Recognition Rate

As described above, each inference method generates a list of modes across pose
and class for a given test instance, each with an associated weight. The output class
is that of the mode of highest weight. A confusion matrix logs the output class versus
ground truth class across all tests. The recognition rate is given by the trace of this
matrix, i.e., the number of correct classifications.

4.3.2 Registration Rate

The output pose for a given test instance is given by that of the weightiest mode
whose class matches the ground truth class. We choose to consider a pose X to be
correct if its scale is within 5%, orientation is within 15° and translation is within
10% (of the object size) of the ground truth’s. Explicitly, the criteria to be met are

∣∣∣∣log

(
s(X)

s(Y)

)∣∣∣∣ < 0.05, (41)

acos

(
trace(R(X)−1R(Y))− 1

2

)
< π/12, (42)
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Fig. 5 Test objects. CAD models of the 10 real objects used for evaluation. Top: piston2,
bearing, piston1, block, and pipe. Bottom: cog, flange, car, knob, and bracket.

‖t(X)− t(Y)‖√
s(X)s(Y)

< 0.1, (43)

with Y being the ground truth pose. In the case of an object having symmetries there
are multiple Y’s, and distance to the closest is used.

4.3.3 Learning σ

We learn the mean shift kernel bandwidth, σ (or in the case of SRT, σs, σr and
σt ), used for each mean shift algorithm by maximizing the registration rate from
cross-validation on two training classes (which are not used in the final evaluation).
Registration rate is maximized using local search: an initial bandwidth is chosen,
then the registration rate computed for this value and the values 1.2 and 1/1.2 times
this value. That value with the highest score is chosen, and the process is repeated
until convergence. With 3 parameters to learn, the local search is computed over a
3D grid.

4.4 Results

Table 3 summarizes the quantitative results for the four inference methods tested.
It shows that SRT mean shift performs best at both recognition and registration.
The third row gives registration rate taking into account scale and translation only
(as the Hough method only provides these), indicating that mean shift performs
considerably better than Hough voting at registration. Also given (row 5) is the mean
of output scales (each as a ratio of the output scale over the ground truth scale) of the
registration result, which shows a marked bias towards a smaller scale when using
extrinsic mean shift. Whilst better than extrinsic mean shift at registration, intrinsic
mean shift is the slowest8 method by an order of magnitude.

8 We used optimized implementations for all methods.
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Table 3 Quantitative results for the four inference methods tested. The SRT mean shift
method is best in all respects except speed, for which it is better than the other mean shift
methods.

SRT Extrinsic Intrinsic Hough

Recognition 64.9% 49.6% 45.5% 56.1%
Registration 68.3% 52.0% 62.0% –

Registration (t,s) 79.8% 62.0% 75.7% 57.3%9

Processing time 1.6s 9.7s 127s 0.043s
Mean scale 0.995 0.959 0.987 –

Table 4 Registration rate per class (%). SRT mean shift performs best on 7/10 classes.

bearing block bracket car cog flange knob pipe piston1 piston2

SRT 77 13 95 75 100 41 88 86 44 63

Extrinsic 36 12 90 50 80 32 53 63 37 67

Intrinsic 54 19 83 90 90 36 65 82 34 67

The per-class registration rates of the mean shift methods are given in Table 4,
showing that SRT out-performs extrinsic mean shift in 9 out of 10 classes, and
intrinsic mean shift in 7 out of 10. The scale-invariance of registration rate, and
hence, by implication, recognition rate, using SRT and intrinsic mean shift, and the
contrasting scale-variance of extrinsic mean shift (as discussed in Sect. 2.4.1), is
shown empirically in Fig. 6.

Fig. 6 Scale-invariance. Registration rate over scale, showing that only extrinsic mean shift
varies with scale.

9 This score is the percentage of ground truth poses that were in the same bin as the output
pose.
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Fig. 7 Confusion matrices for the four inference methods tested. The Hough voting method
performs poorly on objects with low rotational symmetry, while mean shift methods, and in
particular SRT, perform better.

The confusion matrices for the four inference methods are shown in Fig. 7.
Hough voting performs very poorly on bracket, car and pipe, getting a recogni-
tion rate of just 1.3% on average for these classes, which all have low rotational
symmetry; in particular it prefers cog and flange (which both have high rotational
symmetry), no doubt due to the marginalization this method performs over rotation.
Intrinsic mean shift shows a tendency to confuse block, and cog and piston1 to a
lesser degree, for other classes, whilst extrinsic and SRT mean shift confuse cog,
and block and piston1 to a lesser degree for other classes.

Finally, Fig. 8a–c demonstrates that SRT mean shift applied to a real scene con-
taining multiple objects yield more accurate results than extrinsic mean shift and
intrinsic mean shift. Given a threshold weight above which modes are accepted,
mean shift on the votes can produce many false positive detections, as shown by
the low precision at high recall rates in Fig. 8d. This issue is addressed in another

(a) SRT mean shift (b) Extrinsic mean shift

(c) Intrinsic mean shift (d) Hough voting
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work [44]. Our system can additionally (though not used here) filter the list of out-
put poses using physical constraints such as the position of the ground plane and
collision detection, which we found removed the majority of false positive results,
including those shown in Fig. 8a–c.

(a) Extrinsic mean shift output with six objects (b) Intrinsic mean shift output with six objects

(c) SRT mean shift output with six objects (d) Precision–recall

Fig. 8 Performance with multiple objects. Given a point cloud with 6 objects, (a) Extrinsic
mean shift finds 3 of them with 2 false alarms, (b) Intrinsic mean shift finds 2 of them with
2 false alarms, (c) SRT mean shift find 3 of them with no false alarms. (d) Precision-recall
curves of the mean shift methods for correct registration and recognition jointly.

5 Conclusion

We have introduced the SRT distance for use in mean shift on poses in the space
of direct similarity transformations, S+(n). We have proven the distance to be left-
invariant, and have a unique, closed-form mean with the desirable properties of
scale, rotation and translation compatibilities. We have demonstrated the use of this
distance for registration and recognition tasks on a challenging and realistic 3D
dataset which combines real-world objects, with and without rotational symmetries,
together with a vision-based geometry capture system and basic features.

Our results show that SRT mean shift has better recognition and registration rates
than both intrinsic and extrinsic mean shift, as well as Hough voting. We also show
that extrinsic mean shift not only is scale-variant but also biases output scale, and
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that intrinsic mean shift is slower to compute. In addition to the performance in-
crease over Hough voting, especially in the presence of rotationally symmetric ob-
jects, we demonstrate for the first time that mean shift on the full 7D pose space
of S+(3) is not only possible, but that it also provides accurate 7D registration, in-
cluding rotation. This is not practical using Hough-based approaches, due to their
exponential memory requirements.

Potential future research includes creating efficient probability density functions
on S+(n), which will serve as building blocks for statistical learning and inference
on this non-Euclidean space.
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Multiple Classifier Boosting and
Tree-Structured Classifiers

Tae-Kyun Kim and Roberto Cipolla

Abstract. Visual recognition problems often involve classification of myriads of
pixels, across scales, to locate objects of interest in an image or to segment images
according to object classes. The requirement for high speed and accuracy makes
the problems very challenging and has motivated studies on efficient classification
algorithms. A novel multi-classifier boosting algorithm is proposed to tackle the
multimodal problems by simultaneously clustering samples and boosting classifiers
in Section 2. The method is extended into an online version for object tracking in
Section 3. Section 4 presents a tree-structured classifier, called Super tree, to fur-
ther speed up the classification time of a standard boosting classifier. The proposed
methods are demonstrated for object detection, tracking and segmentation tasks.

1 Introduction

Boosting has become a standard method in object detection [3], tracking [26] and
segmentation [33] problems, where a vast number of image sub-windows, across
pixels and scales, need to be classified. Performing the tasks in a reasonable time
demands extremely fast evaluation of each sub-window. A boosting classifier makes
a decision by aggregating simple weak-learners such as Haar-like features, whose
computations are accelerated by an integral image.

When object images exhibit multi-modalities (see Figure 1), a single boosting
classifier is often not sufficient. A standard boosting classifier [25, 9] is represented
by the weighted sum of binary weak-learners as
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Fig. 1 Pedestrian detection. Wojek et al. [19] have shown that the proposed multiple classi-
fier boosting algorithm [31] outperforms various standard methods (SVM, AdaBoost etc) for
the multi-appearance pedestrian detection problems.

H(x) =
m

∑
i=1

αihi(x), (1)

where αi is the weight and hi the i-th binary weak-learner in {−1,1}. Object im-
ages of e.g., multi-poses or multi-object categories are difficult to be dichotomised
from non-object images by a single aggregation of simple features. Conventionally,
multiple boosting classifiers, each of which is for a defined sub-category, are re-
quired [4, 6]. However, manual labeling of object categories and/or poses is difficult
for a large data set and how to partition images into sub-categories is often not clear.
We present a new co-clustering problem of images and visual features in Section 2.
The problem is tackled by simultaneously boosting multiple classifiers which com-
pete for object images by their expertise. Each boosting classifier is an aggregation
of weak-learners, i.e., simple visual features. The solution is achieved by a gradient-
descent optimisation technique. We demonstrate by both synthetic and real image
data sets that the obtained classifiers are capable of solving XOR i.e., multi-modal
classification problems that a standard boosting classifier fails to solve.

In object tracking a major challenge is handling appearance changes of a target
object due to factors such as changing pose, illumination and deformation. Recently
a class of techniques using discriminative tracking has been shown to yield good
results by treating tracking as a classification framework [21, 22, 24, 26] (see Fig-
ure 2). A classifier is iteratively updated using positive and negative training samples
extracted from each frame. Online boosted classifiers have been widely adopted ow-
ing to their efficiency and good classification performance [22, 26, 27]. However, as
they maintain a single boosted classifier, they are limited to single view tracking or
slow view changes of a target object. Tracking tends to fail during rapid appearance
changes, because most weak learners of a boosted classifier do not capture the new
feature distributions. Rapid adaptation of an online classifier in order to track these
changes increases the risk of incorrectly adapting to background regions. Section 3
presents a new multi-pose object tracking solution by extending the multi-classifier
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Re-detection

Search region 

at time t+1

Previous object location 

at time t

Fig. 2 Object tracking by fast re-detection. A search window is set based on the previous
location and speed of a target object, and a classifier is applied to evaluate every sub-window
within the search region. The proposed online multiple classifier boosting method [34] allows
tracking during rapid pose changes.

boosting algorithm in Section 2 into an online version. The proposed algorithm
jointly learns the classifiers and a soft partitioning of the input space, defining an
area of expertise for each classifier. We show how this formulation improves the
specificity of the strong classifiers, allowing simultaneous location and pose estima-
tion in a tracking task. The proposed online scheme iteratively adapts the classifiers
during tracking.

Despite the efficiency of a boosting classifier, it is often required to further reduce
the evaluation time. A cascade of boosting classifiers, which could be seen as a de-
generate tree, effectively improves the classification speed: by filtering out majority
of negative class samples in its early stages [3]. Designing a cascade, however, in-
volves manual efforts for setting a number of parameters: the number of classifier
stages, the number of weak-learners and the threshold per stage. In Section 4, we
present a novel way to speed up the evaluation time of a boosting classifier without
needing a conventional multi-stage boosting cascade. We make a shallow (flat) net-
work deep (hierarchical) by growing a tree from decision regions of a given boosting
classifier. The obtained tree, called Super tree, provides many short paths for speed-
ing up while it preserves the reasonably smooth decision regions of the boosting
classifier for good generalisation. For converting a boosting classifier into a deci-
sion tree, we formulate a Boolean optimisation problem, which has been previously
studied for circuit design but limited to a small number of binary variables. The
method has been demonstrated for segmentation problems (see Figure 3).

The rest of the chapter is organised as follows: Section 2 presents the multiple
classifier boosting algorithm to learn multi-modal appearances, Section 3 its online
version for object tracking. Conversion of a boosting classifier into a decision tree
for speeding up is explained in Section 4. The summary and conclusion is drawn in
Section 5.
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Fig. 3 Semantic segmentation. Every pixel of an input image (left) is assigned one of object
categories (right).

2 Multiple Classifier Boosting

It is known that visual cells (visual features) selectively respond to imagery pat-
terns in perception. Learning process may be associated with co-clusters of visual
features and imagery data in a way of facilitating image data perception. We formu-
late this in the context of boosting classifiers with simple visual features for binary
classification tasks e.g., object detection [3]. There are two sets of images: a set of
object images and a set of non-object images, labeled as positive and negative class
members respectively. There are also a huge number of simple image features, only
a small fraction of which are selected to discriminate the positive class from the neg-
ative class by H(x) =∑t αtht(x) where x is an input vector, αt ,ht are the weight and
the score of t-th weak-learner using a single feature, and H is a boosting classifier.
When object images exhibit multi-modalities, a single aggregation of simple fea-
tures is often not sufficient to dichotomise object images from non-object images.
Our problem is to find out subsets of object images, each of which is classified by
an associated set of features i.e., a boosting classifier, for maximising classification
performance. Note that image clusters to be obtained are coupled with selected fea-
tures and likewise features to be selected are dependent on image clusters, requiring
concurrent clustering of images and features.

See Figure 4 for an example where subsets of face images are pose-wise ob-
tained with associated features by the proposed method (Section 2.1). Features are
placed around eyes, a nose and mouth as the cues for discriminating faces from
background. As such facial features are distributed differently mainly according to
face pose in the example, the obtained pose-wise face clusters are, therefore, intu-
itive and desirable in perception. Note the challenges in achieving this: the input
set of face images are mixed up by different persons, lighting conditions as well as
poses. Some are photographs of real-faces and the others are drawings. Desired im-
age clusters are not observable in input space. See Figure 5 for the clusters obtained
by the traditional unsupervised clustering method (k-means clustering) on the face
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...

...

Face image set

Random image set

Visual feature set
Face cluster-1

Face cluster-2

Feature set-1

Feature set-2

Fig. 4 Perceptual co-clusters of images and visual features. For given a set of face and
random images and simple visual features, the proposed method finds the joint-clusters of
face images and features, which facilitates classification of face images from random images.
Face clusters are pose-wise obtained in the example.

Face cluster-1 Face cluster-2

Fig. 5 Face clusters obtained by the k-means clustering method.

images. Images of the obtained clusters are almost random with respect to pose.
A required method must have a discriminative process and part-based representa-
tions (like the simple features used) to obtain more meaningful face clusters for
classification. Technically, it is also required to cope with an arbitrary initialisation
of image clusters because the target clusters are hidden. The k-means clustering re-
sult is completely different from that obtained by the proposed method as shown in
Figure 4 and Figure 5. Feature selection should be efficiently performed among a
huge number of input features.

We simultaneously boosts multiple boosting classifiers, each of which has exper-
tise on a particular set of object images by a set of weak-learners. The proposed
method (Section 2.1) has a potential for wide-applications in perceptual data explo-
ration. It generally solves a new co-clustering problem of a data set (e.g., a set of
face images) and a feature set (e.g., simple visual features) in a way to maximise
discrimination of the data set from another data set (e.g., a set of random images).

Related Work

Existing co-clustering work (e.g., [1]) is formulated as an unsupervised learning
task. It simultaneously clusters rows and columns of a co-occurrence table by e.g.,
maximising mutual information between the cluster variables. Conversely, we make
use of class labels for discriminative learning. Using a co-occurrence table in prior
work is also prohibitive due to a huge number of visual features that we consider.



168 T.-K. Kim and R. Cipolla

Fig. 6 Mixture of Experts vs Ensemble Learning. In MOE, the gating network as a function
of input activates an expert encouraging specialization. In Ensemble learning i.e., Boosting,
all experts contribute to form a decision with pre-determined weights.

Mixture of Experts [2] (MoE) jointly learns multiple classifiers and data parti-
tions. It emphasises local experts and is suitable when input data are naturally di-
vided into homogeneous subsets, which is, however, often not the case in practice
as observed in Figure 5. Note that EM in MoE resorts to a local optimum and in
practice, it is difficult to establish a good initial data partition. Furthermore, the data
partitions of MoE could be undesirably affected by a large background class con-
sidered in our problem and the linear transformations used in MoE are limited for
delivering a meaningful part-based representation of object images.

Boosting [8] is a sequential learning method for aggregating multiple weak clas-
sifiers. It finds weak-learners to correctly classify erroneous samples by previous
weak-learners. While MoE makes a decision by dynamically selected local experts,
all experts or weak-learners in a boosting classifier contribute to a decision with
weights (See Figure 6). Expert selection required in MoE is generally a difficult
problem when an input space is not naturally divided into sub-regions (clusters).
A boosting classifier solves various non-linear classification problems but cannot
solve XOR problems where only half the data can be correctly classified by each
weak-learner (see [8] for the strength of weak learnability). Two disjointed sets of
weak-learners, i.e., two boosting classifiers, are required to conquer each half of
data by a set of weak-learners. Torralba et al.’s method for multiple boosting clas-
sifiers [4] relies on manual labels for cateogry/pose, whereas we optimise image
clusters and boosting classifiers simultaneously.

2.1 MCBoost: Multiple Classifier Boosting

Our formulation considers K strong classifiers, each of which is represented by a
linear combination of weak-learners as
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Fig. 7 Risk map computed for given two class data (circle and cross). Weak-learners (either
a vertical or horizontal line) found by the Adaboost method [8] are placed on the high risk
regions.

Hk(x) =∑
t
αkt hkt(x), k = 1, ...K, (2)

where αkt and hkt are the weight and the score of t-th weak-learner of k-th strong
classifier. Each strong classifier is devoted to a subset of input patterns allowing
repetition and each weak-learner in a classifier comprises of a single visual feature
and a threshold. For aggregating multiple strong classifiers, we formulate Noisy-
OR as

P(x) = 1−∏
k

(1−Pk(x)), (3)

where Pk(x) = 1/(1+ exp(−Hk(x))). It assigns samples to a positive class if any of
classifiers does and to a negative class if every classifier does. That is, an individ-
ual classifier is forced to learn from a subset of positive samples and all negative
samples. A positive sample is therefore required to be accepted as the positive class
by at least one of the classifiers and a negative sample to be rejected by all. The
Noisy-OR framework does not require classifier selection when making a decision:
the joint probability in (3) is computed using all k classifiers for any x. Note that the
mixture of experts partitions an input space into many overlapping or disjoint re-
gions and only classifiers of regions that a test data point falls in are used. This is a
significant difference in design. A conventional design in object detection study [6]
also favours the OR framework that does not need classifier selection. Our derivation
builds on the previous Noisy-OR boosting algorithm [5], which has been proposed
for multiple instance learning. It learns a single boosting classifier from given bags
of samples whereas ours learns multiple boosting classifiers.

The sample weights are initialised e.g., by randomly partitioning positive sam-
ples, i.e., wki = 1 if xi ∈ k and wki = 0 otherwise, where i and k denote i-th sample
and k-th classifier respectively. We set wki = 1/K for all k’s for negative samples.
For given weights, the method finds K weak-learners at t-th round of boosting, to
maximise

∑
i

wki ·hkt(xi), hkt ∈H, (4)
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Algorithm 1. MCBoost

Input: A data set (xi,yi) and a set of pre-defined weak-learners
Output: Multiple boosting classifiers Hk(x) = ∑T

t=1 αkt hkt(x),k = 1...,K

1.Compute a reduced set of weak-learnersH by the risk map (5) and randomly
initialise the weights wki.

2.Repeat for t = 1, ...,T :
3. Repeat for k = 1, ...,K:
4. Find weak-learners hkt that maximise ∑i wki ·hkt(xi),hkt ∈H.
5. Find the weak-learner weights αkt that maximise J(H+αkthkt).

6. Update the weights by wki =
yi−P(xi)

P(xi)
·Pk(xi).

7. End
8.End

Fig. 8 Pseudocode of MCBoost algorithm

where hkt ∈ {−1,+1} andH denotes a reduced set of weak-learners for speeding up
the learning process. Previous methods e.g., [20] for reducing the boosting learning
time may be independently deployed. The reduced set is obtained by restricting
the location of weak-learners around the expected decision boundary. Each weak-
learner, h(x) = sign(aT x + b), where a and b represent a simple feature and its
threshold respectively, can be represented by aT (x− xo), where xo is interpreted as
the location of the weak-learner. By limiting xo to the data points that have high
risk to be misclassified, the complexity of searching weak-learners at each round of
boosting is reduced. The risk is defined as

R(xi) = exp{− ∑ j∈NB
i
‖xi−x j‖2

1+∑ j∈NW
i
‖xi−x j‖2 } (5)

where N B
i and NW

i are the set of predefined number of nearest neighbors of xi

in the opposite class and the same class of xi (see Figure ??). The weak-learner
weights αkt ,k = 1, ...,K are then found to maximise J(H+αkt hkt) by a line search.
Following the AnyBoost method [9, 5], we set the sample weights for the next round
as the derivative of the cost function with respect to the classifier score. For the cost
function J = log∏i P(xi)

yi(1− P(xi))
(1−yi), where yi ∈ {0,1} is the label of i-th

sample, the weight of k-th classifier over i-th sample is updated by

wki =
∂ J

∂Hk(xi)
=

yi−P(xi)

P(xi)
·Pk(xi). (6)

See Figure 8 for the pseudocode of the proposed method.
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Fig. 9 State diagram for MCBoost.

Data Clustering

Data clusters (of positive samples) are obtained by assigning samples xi to a classi-
fier (or cluster) that has the highest classifier probability Pk(xi).

The sample weight of k-th classifier in (6) is determined by the joint probability
P(x) and the probability of k-th classifier Pk(x). For a negative class (yi = 0), the
weights only depend on the probability of k-th classifier. The classifier gives high
weights to the negative samples that are misclassified by itself, independently of
other classifiers. For a positive class, high weights are assigned to the samples that
are misclassified jointly (i.e., the left term in (6)) but may be correctly classified
by the k-th classifier through next rounds (i.e., high Pk(x)). That is, classifiers con-
centrate on samples in their expertise through the rounds of boosting. This can be
interpreted as data partitioning.

Toy Examples

Figure 9 illustrates the concept of the MCBoost algorithm. The method iterates two
main steps: learning weak-learners and updating sample weights. States in the figure
represent the mode of samples (A,B or C) that are correctly classified at each step.
The sample weighting (6) is represented by data re-allocation. Assume that a posi-
tive class has the samples of three target clusters denoted by A,B and C. Samples of
more than two target clusters are initially assigned to a classifier. Weak-learners are
found to classify the dominant mode of samples (bold letters) in each classifier (step
1). Classifiers then re-assign samples according to their expertise (step 2): Samples
C that are misclassified by all are given more importance in the first classifier (bold
letter). Samples B are moved to the third classifier as the expert on B. The first
classifier learns next weak-learners for classifying the samples C while the second
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and third classifiers focus on the samples A and B respectively (step 3). Similarly, the
samples A,C are moved into the respective most experts (step 4) and all re-allocated
samples are finally correctly classified by weak-learners (step 5).

We present a toy example of XOR classification problems (see Figure 10). The
positive class (circle) comprising the three sub-clusters and the negative class (cross)
in background make the XOR configurations. Any standard single or double boost-
ing classifiers, therefore, do not successfully dichotomise the classes in the example.
We exploit vertical or horizontal lines as weak-learners and set the number of clas-
sifiers K to be three by a priori. We performed partitioning of positive samples as
shown in the left by three different color blobs (randomly mixed) for initialising the
sample weights: each classifier was initially assigned all three color data points hav-
ing its data center around the center of the coordinate. The final decision boundaries
and the tracks of data cluster centres of the three boosting classifiers are shown in the
right. Despite the mixed-up initialisation, the method learns the three classifiers that
nicely settle into the target clusters after a bit of jittering in the first few rounds. The
weak-learner weights (bottom) show the convergence of the three classifiers. Note
that the method obtains the data clusters purely by the boosting classifier scores i.e.,
in a discriminative sense. Although the same data clusters are obtained by conven-
tional clustering methods e.g., k-means in this example, clusters by conventional
ways i.e., in a generative sense are often different from those of our method as ex-
emplified in Figure 5. The proposed method works well with random initialisations
and desirably exhibits quicker convergence when a better initialisation is given.

2.2 Experiments

Discriminative Clustering

We performed experiments using a set of INRIA pedestrian data [11] and PIE face
data [10]. The INRIA set contains 618 pedestrian images as a positive class and
2436 random images as a negative class in training and 589 pedestrian and 9030
random images in testing. The pedestrian images show wide-variations in back-
ground, human pose and shapes, clothes and illuminations (Figure 11). The PIE
data set involves 900 face images as a positive class (20 persons, 9 poses and 5
lighting conditions) and 2436 random images as a negative class in training and 900
face and 12180 random images in testing. The 9 poses are distributed form left pro-
file to right profile of face, and the 5 lighting conditions make sharp changes on face
appearance as shown in Figure 11. Some facial parts are not visible depending on
both pose and illumination. All images were cropped and resized into 24×24 pixel
images. A total number of 21780 simple rectangle features (as shown in Figure 4)
were exploited.

MCBoost learning was performed with the initial weights that were obtained by
the k-means clustering method. Avoiding the case that any of the k-means clusters
is too small (or zero) in size has helped quick convergence in the proposed method.
We set the portion of high risk data as 20% of total samples for speeding up in
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that nicely settle into the desired clusters and correct decision boundaries (right). The weak-
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Fig. 11 Perceptual clusters of pedestrian and face images. Clusters are found to maximise
discrimination power of pedestrian and face images from random images by simple visual
features.

training. The number of classifiers was set as K ∈ {2,3,4,5} and K ∈ {3,5,7,9} for
the INRIA and PIE data set respectively. For all cases, every classifier converged
within 50 boosting rounds.
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Figure 11 shows the cluster centers obtained by the proposed method. The ob-
ject images were partitioned into K clusters (or classifiers) by assigning them to
the classifier that has the highest Pk(x). For the given pedestrian images, the first
three cluster centers look unique and the last two are rather redundant. The three
pedestrian clusters obtained are intuitive. They emphasise the direction of intensity
changes at contours of the human body as discriminating cues of pedestrian images
from random images. It is interesting to see distinction of upper and lower body in
the second cluster, which may be due to different clothes. For the PIE data set, the
obtained face clusters reflect both pose and illumination changes, which is some-
what different from our initial expectation of getting purely pose-wise clusters as
in the case of Figure 4. This result is, however, also reasonable when considering
the strong illumination conditions that shadow face parts. For example, frontal faces
whose right-half side is not visible by the lighting cannot share any features with
those having left-half side not visible. Certain profile faces rather share more facial
features (e.g., one eye, eye brow and a half mouth) with the half-shadowed frontal
faces, jointly making a cluster. All 9 face clusters seem to capture unique character-
istics of the face images.

Multi-view Face Detection

Another experiment was designed using the CMU frontal and profile face image
data sets [12, 13]. Some face examples were shown in Figure 4. The two data sets
contain 322 images in total. The images were randomly and equally partitioned into
a train and a test set. The train set of 161 images had 323 frontal faces and 192 profile
faces and the test set had 271 frontal and 171 profile faces. Every face was cropped
and resized into 24x24 pixel images and around 200 negative samples per image
were randomly collected and resized into 24x24 pixel images. The number of nega-
tive samples in the initial train set was 32200. Two of standard AdaBoost classifiers
(setting the number of weak learners be 50 per each) were initially trained using ei-
ther the frontal or profile faces (by the manual pose label) with the random negative
samples in the initial train set. A total number of 72000 simple rectangle features
were exploited. We applied the two learnt classifiers on the train and test images for
bootstrapping. The total number of bootstrapped negative samples was 7400 for the
train set and 7635 for the test set. The train and test set used for comparison consisted
of both frontal and profile face images and bootstrapped negative samples. The stan-
dard AdaBoost classifier (using 100 weak-learners), two AdaBoost classifiers either
by the k-means clustering (K=2) or the manual pose labels (using 50 weak-learners
per each) and the MCBoost classifier initialised by the k-means clustering (with
K=2) (50 weak-learners per each) were compared. Figure 12 shows the ROC curves
of the methods for the train (left) and test (right) sets respectively. Both graphs
showed the same tendency. The MCBoost significantly outperformed the AdaBoost
using 100 weak-learners (we varied the number of weak-learners and obtained the
best performance by 100 weak-learners) and the AdaBoost with the k-means (K=2).
The proposed method delivered the similar accuracy to that of the AdaBoost with
the pose labels. The AdaBoost with the k-means outperformed the standard single
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Fig. 12 ROC curves on the CMU frontal and profile face data sets. For the train set (left)
and test set (right).

AdaBoost classifier. The results confirmed that the standard boosting classifier can
not successfully classify samples in the XOR case (by the multi-modal face samples
and bootstrapped negative samples) and the clusters learnt in the proposed discrim-
inative manner are more suited to learn boosting classifiers than those obtained by
standard unsupervised clustering methods. MCBoost exhibited very close accuracy
to the classifiers learnt by the manual pose labels in the experiment.

The MCBoost method has been extensively tested by Wojek et al. for pedes-
trian detection problems in [19]. They have tested the various combinations of fea-
tures (HOG, Haar, Oriented Histogram Flow) and classifiers (SVM, AdaBoost, MC-
Boost) on their new challenging pedestrian data sets. It has shown that MCBoost
achieves superior performance to linear SVM-based detectors and significantly out-
performs Adaboost for both static and dynamic pedestrian detection problems. MC-
Boost has been shown to be the most robust classifier with respect to challenging
lighting conditions while being computationally less expensive than SVMs.

Discussions

We have introduced a discriminative co-clustering problem of images and visual
features and have proposed a novel method of multiple classifier boosting called
MCBoost. It simultaneously learns image clusters and boosting classifiers, each of
which has expertise on an image cluster. The method works well with either ran-
dom initialisation or initialisation by conventional unsupervised clustering meth-
ods. We have shown in the experiments that the proposed method yields meaningful
co-clusters of images and features and significantly outperforms the conventional
designs that individually learn multiple boosting classifiers by the clusters obtained
by the k-means clustering method or pose-labels.

Useful future studies on the MCBoost method include development of a method
to automatically determine K, the number of classifiers. At the moment, we first
try a large K and decide the right number as the number of visually heterogeneous
clusters obtained (see Section 2.2). A post-corrective step of initial weak-learners
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would be useful for more efficient classification by less number of weak-learners
in total. When the classifiers start from wrong initial clusters and oscillate between
clusters until settling down, some initial weak-learners are wrong and others may be
wasted to make up for the wrong ones. Once the classifiers find right clusters, they
exhibit convergence by decreasing the weak-learner weights. Restaring MCBoost
with the clusters found may yield economical sets of weak-learners for the same
accuracy.

3 Online Multiple Classifier Boosting for Object Tracking

Object tracking has been often treated as a classification problem where it is done by
fast re-detection. A search window is set based on the previous location and speed of
a target object, and the object is detected within the search window. The detector is
usually a binary classifier which evaluates sub-windows to tell if they contain a tar-
get object or not, at every pixel across scales, within the search window. It requires
very efficient evaluation per sub-window, as it typically involves a huge number of
sub-windows. Such a classification framework has been shown to yield good track-
ing results [21, 22, 24, 26]. A classifier is on-line updated to reflect environmental
changes. Online boosted classifiers have been widely used owing to their efficiency
and accuracy [22, 26, 27]. The work in [24] introduced online feature selection for
tracking, where in each frame the most discriminative features are chosen to com-
pute likelihoods. Ensemble Tracking [21] takes a similar approach by combining a
small number of weak classifiers using AdaBoost. Online boosting for tracking [26]
introduced a scheme where features are selected from a pool of weak classifiers and
combined into a strong classifier. Online schemes without any target model tend to
suffer from drift. One solution is to introduce an object model that is learned prior
to the tracking phase [27, 29]. The work in [27] proposed semi-supervised learning,
and included a boosted detector or simply the object region in the first frame as a
prior to an online boosting scheme.

Maintaining a single boosted classifier during tracking is limited to single view
tracking or slow view changes of a target object. Tracking tends to fail during rapid
appearance changes, because most weak learners of a boosted classifier are not rel-
evant to the new object appearance. Forcing an online classifier to adapt to these
rapid changes increases the risk of incorrectly adapting to background regions. A
multi-modal object representation and classifier is therefore required. Such a model
can be either generative [23, 32] or discriminative [30]. Typically, in the latter case,
distinct appearance clusters are found first and a classifier is trained on each [4].

Recently multi-classifier boosting was introduced, where clustering and classi-
fier training is performed jointly [18, 31] (see Section 2.1). These methods have so
far been applied to object detection, where the full training set is available from the
beginning. However, direct application to the online tracking domain is not straight-
forward, the main reason being that in an online setting the number of positive and
negative samples is not sufficient to ensure a good partitioning of the input space
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(a) (b)

(c)

Fig. 13 Learning cluster-specific classifiers on toy data. The positive class (circles) exhibits
three clusters and is surrounded by data from the negative class (crosses). (a) The classifi-
cation result using a standard boosting classifier shows errors due to the XOR configuration
(colored circles denote classification as positive class). (b) The Multi-classifier boosting algo-
rithm of [31] successfully divides the two classes but uses two boosting classifiers (blue and
red line) in the same region, leading to inefficient use of weak classifiers. The two clusters
with no negative data points between them can be correctly classified by a single boosting
classifier. (c) The classification result of the proposed MCBQ algorithm shows improved
classifier expertise.

in terms of classifier expertise in the initial phase. Figure 13 illustrates the classi-
fication results of (a) standard Adaboost [25], (b) MCBoost [31] and (c) the pro-
posed algorithm called MCBQ on a toy XOR classification problem. The positive
class exhibits three clusters, but two of them actually form a single cluster in a dis-
criminative sense as there are no negative points between them. Standard AdaBoost
shows poor separation of the classes because it is unable to resolve XOR configu-
rations. For the MCBoost algorithm and the proposed solution, we set the number
of classifiers to be three. MCBoost successfully divides the two classes but shows
overlapping areas of expertise for the two classifiers, since the two clusters without
negative data points in-between can be correctly classified by a single boosting clas-
sifier. In contrast, the proposed algorithm shows improved partitioning of the input
space. As a consequence, weak classifiers are used more efficiently. While tracking
continues, additional negative samples are collected, eventually establishing three
positive clusters in a discriminative sense in this example. However, in the case of
MCBoost, the initially incorrectly assigned boosting classifiers are difficult to be
correctly reassigned during online updates. We have observed this case when clas-
sifiers are initially trained on a short sequence that contains multi-views of a target
object and are subsequently updated.

We therefore propose an extension of the multi-classifier boosting algorithm by
introducing a weighting function Q that enforces a soft split of the input space.
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In addition, we present an online version of the algorithm to dynamically update
the classifiers and the partitioning for the task of multi-modal object tracking. The
algorithm is applied to object tracking where it is used to learn different appearance
clusters during a short initial supervised learning phase.

Other related work is online multiple instance learning (MIL) [22, 5]. Our pro-
posed method can be seen as a multi-class extension of [22].

3.1 Joint Boosting and Clustering

This section explains our improvements in the MCBQ algorithm, based on the multi-
classifier boosting algorithm in Section 2. The following notation is used: Given
is a set of n training samples xi ∈ X , where X is the input domain (in our case
image patches), with labels yi ∈ {−1,+1} corresponding to non-object and object,
respectively. Additionally, each of the object samples can be considered belonging
to one of K groups where the class membership is a priori unknown.

Multi-classifier Boosting creates strong classifiers with different areas of exper-
tise. However, it relies on the training data set containing negative samples which
separate the positive samples into distinct regions in the classifiers’ discriminative
feature space. This also implies that there is no guarantee of pose-specific cluster-
ing. In fact there is no constraint in the algorithm that enforces strong classifiers to
focus on a unique area of expertise, and there is no concept of a metric space on
which perceived clusters can be formed. We make the classifier assignment explicit
by defining functionsQk(xi) :X → [0,1] which weight the influence of strong clas-
sifier k on a sample xi. By mapping xi into a suitable metric space, we can impose
any desired clustering regime on the training set, thus Q defines a soft partition-
ing of the input space. The choice of Q is dependent on the application domain. In
principle any function can be used that captures the structure of the input domain,
i.e., that maps the samples to meaningful clusters. In this method Q is defined by a
K-component Gaussian mixture model in the space of the first d principal compo-
nents of the training data. The k-th GMM mode defines the area of expertise of the
k-th strong classifier. The GMM is updated using a EM-like algorithm alongside the
weak classifiers in the boosting algorithm (Algorithm 1).

The new noisy-OR function in Equation 3 becomes:

p(xi) = 1−∏
k

(1−Qk(xi) pk(xi)), (7)

leading to the new weight update equation:

wk
i =

∂L
∂Hk(xi)

=
yi− p(xi)

p(xi)

Qk(xi) pk(xi)(1− pk(xi))

1−Qk(xi) pk(xi)
. (8)

The full MCBQ algorithm is summarized in Algorithm 2. Note that compared to the
original multi-classifier boosting algorithm additional steps 1, 2, and 8 are required
and step 7 is modified.
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Algorithm 1. Updating Weighting Function
1. Calculate the likelihood of each of the samples under the k-th strong clas-

sifier, pk(xi)

2. Set the new probability of the sample being in the k-th GMM component
as its currentQ value scaled by the likelihood from the classifier,Qk(xi)pk(xi)

3. Update the k-th cluster by the mean and covariance matrix of the samples
under this probability.

Algorithm 2. Multi-classifier Boosting with Weighting Function (MCBQ)
Input: Data set (xi,yi), set of pre-defined weak learners.
Output: Multiple strong classifiers Hk(xi), weighting function Qk(xi).
1. Initialize Q with a Gaussian mixture model.
2. Initialize weights wk

i to the values of Qk(xi).
3. Repeat for t = 1, ...,T
4. Repeat for k = 1, ...,K
5. Find weak learners hk

t maximizing ∑i wk
i hk

t (xi).
6. Compute weights αk

t maximizing L(Hk +αk
t hk

t ).
7. Update weights by Equation 8.
8. Update weighting function Qk(xi) by Algo 1.
9. End
10. End

3.2 Online MCBQ for Object Tracking

The goal is to learn an object-specific appearance model using a short initial training
sequence in order to guide the tracker [27, 32]. The number of training samples is
limited, but is sufficient to bootstrap the classifier. Subsequently, we would like
the tracker to remain flexible to some appearance changes while using the learned
model as an anchor. This motivates the following approach of iteratively adapting
multiple strong classifiers with MCBQ. In order to move MCBQ into an online
setting we need a mechanism for rapid feature selection and incremental updates of
the weak classifiers as new training samples become available. The online boosting
algorithm [26] addresses this issue, allowing for the continuous learning of a strong
classifier from training data. The key step is, at each boosting round, to maintain
error estimates from samples seen so far, for a pool of weak classifiers. At each
round t a selector St maintains these error estimates for weak classifiers in its pool,
and chooses the one with the smallest error to add to the strong classifier.

To summarize, our tracking algorithm contains two-stages: Firstly, training data
is assembled in a supervised learning stage, where the system is given initial sam-
ples which span the extent of all appearances to be classified. An initial MCBQ
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classifier is then built rapidly from this data. Secondly, additional training samples
are supplied to update the classifier with new data during tracking.

Weak Learning and Selection

All weak classifiers use a single Haar-like feature. For online learning from a feature
f and labeled samples (xi,yi) we create a decision threshold θ k

m with parity pk
m from

the mean of feature values seen so far for positive and negative samples, where each
feature value is weighted by the corresponding image weight:

hk
t,m(xi) = pk

m sign( f (xi)−θ k
m), (9)

θ k
m = (μk,++ μk,−)/2, pk

m = sign(μk,+− μk,−), (10)

μk =
Σi|wk

i | f (xi)

Σi|wk
i |

. (11)

The error of the weak classifier is then given as the normalized sum of the weights
of mis-classified samples:

ek
t,m =

∑i 1(hk
t,m(xi) �= yi)|wk

i |
∑i |wk

i |
. (12)

A weak classifier can then be chosen from a pool as the one giving the minimum
error.

Supervised Learning

During the supervised learning stage, we have a set of weighted samples, and a
global feature pool F . Weight distributions are initialized to randomly assign posi-
tive samples to a strong classifier k, and at each round t and strong classifier k the
equations 9, 10, 11, 12 are applied to initialize and select a weak classifier based on
exact errors. In order to facilitate selection at the incremental update stage, we store
in each selector Sk

t , for the positive and negative samples (1) for each feature value,
the sum of weights of samples with that value, and (2) the sum of image weights.

To improve speed, each selector only keeps the best M performing weak classi-
fiers for use in the incremental update stage. After each round of boosting, image
weights are updated as in Equation 8, and voting weights calculated based on the
error of the chosen weak classifier.

Incremental Update

Once the initial classifier has been created, it can be updated with new samples.
Weights for positive samples are initialized based on their classification responses
from each of the component strong classifiers in the MCBQ classifier, and the
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Fig. 14 Improved pose expertise: Plots of the contributions of three strong classifiers given
the image input (bottom row). (a) MCBoost [31] shows no clear separation of expertise over
different poses, while (b) MCBQ has learned pose-specific classifiers, corresponding to left,
center and right view of the face.

sample is passed through the boosting framework. The summations stored in each
selector can be updated from the new sample, and thus the new classification thresh-
olds for the weak classifiers calculated using equations 9, 10, 11. The error val-
ues from Equation 12 are used to choose the best weak classifier to add to the
strong classifier. Finally, the worst-performing weak classifier is replaced with a
new randomly-generated one. Note that in the case of Q being defined as a Gaus-
sian mixture in PCA space, we update the PCA space by the algorithm of Hall et
al. [28] before updatingQ. Pseudo-code is given in Algorithm 3.

3.3 Results

Pose Clustering

For this experiment we captured short training and testing sequences (about 100
frames each) of a face rotating from left to right, see Fig. 14. We trained classifiers
using MCBoost [31] and the MCBQ algorithm on face images and random patches
sampled from the training sequence. In both cases the number of strong classifiers
K is set to 3 by hand. TheQ function is defined by a 3-component Gaussian mixture
on the first 30 principal components. The graph in Fig. 14 shows the contribution of
each strong classifier on the test sequence. The MCBoost algorithm shows no clear
pose-specific response, while MCBQ has successfully captured three distinct pose
clusters, left, right, and center, as shown by the changes in classifier weights.

Tracking Performance

In order to evaluate the performance on the multi-appearance tracking problem,
we captured four sequences where the target object rapidly changes its pose. The
sequences are toyface (452 frames), handball (210 frames), cube (357 frames),
and face (185 frames). We also compared on the public Sylvester sequence (1345
frames). The performance was evaluated against manually labeled ground truth. We
compared AdaBoost, MCBoost and MCBQ trackers (both manually set to K = 2),
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Algorithm 3. Online MCBQ – Incremental Update
Require: Labeled training image (xi,yi), yi ∈ {−1,+1}.
Require: MCBQ classifier Hk(xi), k = 1, ...,K.

// Initialize sample weight wk
i =Qk(xi)/∑kQk(xi)

// For each round of boosting
for t = 1, . . . ,T do

// For each strong classifier, update selector Sk
t

for k = 1, . . . ,K do
// Update the selector’s weak classifiers
for m = 1,2, . . . ,M do

// Update cached weight sums from sample’s feature value, for positive and
negative samples
// Update classification threshold and parity

(
hk

t,m,(xi,yi),wk
i

)
// Calculate new error ek

t,m = ∑i 1(hk
t,m(xi) �= yi)|wk

i |
end for
// Choose the weak classifier with the lowest error
m∗ = argminm

(
ek

t,m

)
, hk∗

t = hk
t,m∗ and ek∗

t = ek
t,m∗

// Calculate voting weight αk
t = 1/

(
1+ exp{−ln

(
1−ek∗

t
ek∗

t

)
}
)

// Replace the weak classifier with the highest error
m− = argmaxm

(
ek

t,m

)
and replace hk

t,m−
end for

// UpdateQk(xi) function
// Update importance weights by Equation 8, then re-normalize.

end for

as well as two publicly available trackers, Semi-supervised Boosting [27] and MIL
tracking [22]. For each sequence the initial classifier was trained on a short ini-
tial training set (25-40 frames), capturing the appearance variation, and updated
online during tracking. Examples of positive training samples are shown in Fig. 15.
Because such a training set is generally not available for public tracking sequences,
the training data for the Sylvester sequence was constructed by randomly sampling
30 frames from the whole sequence. For AdaBoost, MCBoost and MCBQ 50 ran-
dom patches per frame were collected as negative class samples. We stopped boost-
ing rounds when the classification error reached zero on the training samples. The
public code for semi-supervised Boosting and MIL tracking was modified so that
these methods can also be trained on the initial set, otherwise their default param-
eters were used. Parameter settings were unchanged for all experiments. Fig. 16
shows the tracking errors on the five sequences. While none of the algorithms was
able to successfully track the target in all sequences, MCBQ showed the best overall
performance, in particular outperforming AdaBoost and MCBoost. The MIL tracker
performed best on two sequences, however, was not able to recover from drift in two
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Fig. 15 Positive class samples for training. A subset of the positive samples is shown for the
four sequences.
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Fig. 16 Tracking error on test sequences. The plots show the tracking error over time on
four test sequences for AdaBoost (red) MCBoost (green), MCBQ (blue), MILTrack (cyan),
and SemiBoost (yellow). MCBQ shows the best overall performance.

of the other sequences. Overall, the single classifier trackers tend to adapt to a cur-
rent appearance mode forgetting previous appearance modes, which often makes
them fail when target objects rapidly change appearance modes. Fig. 17 shows ex-
ample frames from the test sequences.

Discussions

This section proposed MCBQ, a multi-classifier boosting algorithm with a soft
partitioning of the input space. This is achieved with a weighting function Q en-
suring that coherent clusters are formed. We applied the method to simultaneous
tracking and pose estimation. The learned model allows tracking during rapid pose
changes, since it captures multiple appearances. Existing single classifier trackers
tend to adapt to a single appearance mode, forgetting previous modes. MCBQ can
be seen as an extension of MCBoost [31] for the online setting, or a multi-class ex-
tension of the MIL tracker [22]. Future work includes a more principled selection
of the number of strong classifiers and exploring other choices for the weighting
function.
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Fig. 17 Example tracking results on test sequences. The comparison shows tracking results
for MCBQ (blue), AdaBoost (red), MILTrack (cyan), and SemiBoost (yellow) in the evalua-
tion. See text for details.

4 Conversion of a Boosting Classifier into a Decision Tree by
Boolean Optimisation

Boosting is a popular method in object detection [3], tracking [26] and segmenta-
tion [33] tasks, which demand very fast classification. Boosting makes a decision by
aggregating simple weak-learners e.g., Haar-like features, which are computed very
fast on an integral image. Despite its efficiency, it is often required to further reduce
the classification time. A cascade of boosting classifiers, which could be seen as a
degenerate tree (see Figure 18(a)), effectively improves the classification speed: by
filtering out majority of negative class samples in its early stages [3]. Designing a
cascade, however, involves manual efforts for setting a number of parameters: the
number of classifier stages, the number of weak-learners and the threshold per stage.

In this work, we propose a novel way to reduce down the classification time of
a boosting classifier up to an order of magnitude without sacrificing its accuracy,
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Fig. 18 Boosting as a tree. (a) A boosting cascade is seen as an imbalanced tree, where each
node is a boosting classifier. (b) A boosting classifier has a very shallow and flat network
where each node is a decision-stump i.e., weak-learner.

not relying on a design of cascade. The chance for improvement comes from the
fact that a standard boosting classifier can be seen as a very shallow network, see
Figure 18(b), where each weak-learner is a decision-stump and all weak-learners
are used to make a decision. The flat structure ensures reasonably smooth deci-
sion regions for generalisation, however it is not optimal in classification time. The
proposed method converts a shallow network (a boosting classifier as input) to a
deep hierarchical structure (a decision tree as output). The obtained tree speeds up
a boosting classifier by having many short paths: easy data points are classified by
a small number of weak-learners. Since it preserves the same decision regions of
the boosting classifier, the method alleviates a highly-overfit behaviour of conven-
tional decision trees. We introduce a novel Boolean optimisation formulation and
method. A boosting classifier splits a data space into 2n primitive regions by n bi-
nary weak-learners. The decision regions of the boosting classifier are encoded by
the boolean codes and class labels of the primitive regions. A decision tree is then
grown using the region information gain. Further details are about a better way of
packing the region information and the two stage cascade allowing the conversion
with any number of weak-learners. Without designing a many-stage cascade our
method offers a convenient way of speeding up, while the method incorporated in
such a cascade could provide a further speed-up.

Related Work

For speeding up the classification of a boosting classifier, the shortest set of weak-
learners for a given error rate has been obtained by the sequential probability ratio
test in the work of Sochman et al. [7]. It takes an early exit when the boosting sum
reaches a certain value whose sign cannot be altered by the remaining weak-learners.
Similarly, Zhou has proposed Fast exit method [35]. This line of methods utilises
so called a single path of varying length, while our tree method multiple paths of
different lengths (See Figure 19). The proposed method yields a more optimal speed
(see Section 4.2).
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x
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Fig. 19 Fast-exit vs super tree. Fast-exit methods have the structure of a single path of vary-
ing lengths (a), while our method yields the structure of multiple paths of different lengths (b).

The closest work to ours is Zhou’s [35]. He has introduced representation of a
boosting classifier by a Boolean table and implemented a binary decision tree [35].
His solution, however, is a brute force search for all possible tree configurations,
which is highly computationally-costly. It therefore affords to only about 5 and 10
weak-learners. The speed gain reported was not significant over a standard boosting
classifier and Fast exit method.

Tree-structured multiple boosting classifiers have been proposed for multi-pose
or multi-category detection problems. The common structure is a tree hierarchy each
path of which is a strong boosting classifier. Torralba et al. have proposed sharing
weak-learners among multiple boosting classifiers [4] for accelerating classification
speed. While Torralba’s method requires pre-defined sub-category labels, the meth-
ods in [14, 15, 16] automatically learn the sub-category labels for multiple boost-
ing classifiers in a tree. Whereas all these methods are useful for multiple boosting
classifiers, our work focuses on a single boosting classifier. A further conceptual
difference lies in that the previous studies [17, 14, 15, 16] present a novel way of
learning boosting classifiers and ours takes a boosting classifier learnt in a standard
way as input. We do not alter the decision regions of an input classifier but speed it
up.

Boolean expression minimisation is to minimize the number of terms and binary
variables in the Boolean expression. Algorithms for the minimisation have mainly
been studied in the circuit design [38]. Since circuits have strictly predefined spec-
ifications, exact minimization was the goal of most studies. The complexity of a
logic expression rises exponentially when the number of binary variables increases.
Therefore, conventional minimisation methods are limited to a small number of
binary variables, typically from a few to about 15 variables [38]. Boolean minimi-
sation has been also applied to size down a redundant decision tree, represented by
a Boolean table [39].

4.1 Conversion of a Boosting Classifier into a Tree

Both a boosting classifier and a decision tree are composed of weak-learners (or
called decision-stumps/split-nodes). Whereas a boosting classifier places decision



Multiple Classifier Boosting and Tree-Structured Classifiers 187

34 56791217

2739

54

74

7592

110
128
140152

163175
141153164

154
165176

184 4055

28

415642
57

1829
43587693

111

13
1930

44

597794
112129

142

6078

95

20
3145617980

96
1131304662

81
97114

810

14213247

63
8298

115

131

143
144155

48

64

2233

49
65

8399116117132

6684100118133
145156

166
177185

85
101119

102
120134

146157
16717815

23
3450

6724
35 3651

6886103121
135

147158
16817916918018612213669
87

104123

11
16

2537

52

70
88

105
124
137

148159170181187

7189106
125

26
3853

7290107
73

91

108
126

138
149

150160
171

182172
183
188 189

127
139151161173162174

109

Fig. 20 Decision regions. The decision regions of a boosting classifier (right) are smooth
compared to those of a conventional decision tree (left).
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Fig. 21 Converting a boosting classifier into a tree for speeding up. The proposed conversion
preserves the Boosting decision regions and has many short paths speeding up 5 times.

stumps in a flat structure, a decision tree has a deep and hierarchical structure (see
Figure 18(b) and 21). The different structures lead to different behaviours: Boosting
has a better generalisation via reasonably smooth decision regions. See Figure 20 for
the decision regions of the two methods. Here a part of negative (blue) data points
are scattered in the middle of positive (red) samples. Whereas a conventional deci-
sion tree forms complex decision regions trying classification of all training points,
a boosting classifier exhibits a reasonable smoothness in decision regions. We
propose a method to grow a tree from the decision regions of a boosting classifier.
As shown in Figure 21, the tree obtained, called super tree, preserves the Boosting
decision regions: it places a leaf node on every region that is important to form the
identical decision boundary (i.e., accuracy). In the mean time, Super tree has many
short paths that reduce the average number of weak-learners to use when classify-
ing a data point. In the example, super tree on average needs 3.8 weak-learners to
perform classification whereas the boosting classifier needs 20: all 20 weak-learners
are used for every point.
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4.1.1 Boolean Optimisation Formulation

A standard boosting classifier is typically represented by the weighted sum of binary
weak-learners as

H(x) =
m

∑
i=1

αihi(x), (13)

where αi is the weight and hi the i-th binary weak-learner in {−1,1}. The boosting
classifier splits a data space into 2m primitive regions by m binary weak-learners.
Regions Ri, i = 1, ...,2m are expressed as boolean codes (i.e., each weak-learner
hi corresponds to a binary variable wi). See Figure 22 for an example, where the
boolean table is comprised of 23 regions. The region class label c is determined by
Equation 13. Region R8 in the example does not occupy the 2D input space and thus
receives the don’t care label marked “x” being ignored when representing decision
regions. The region prior p(Ri) is introduced for data distribution as p(Ri) = Mi/M
where Mi and M are the number of data points in the i-th region and in total. The
decision regions of the boosting classifier are encoded by a set of regions repre-
sented as ⎧⎨

⎩
B(Ri) : boolean expression
c(Ri) : region class label
p(Ri) : region prior

(14)

With the region coding, an optimally short tree is defined in terms of average ex-
pected path length of data points as

T∗ = minT∑
i

E(lT(Ri))p(Ri), (15)

where T denotes all possible configurations of a decision tree. E(lT(Ri)) is the ex-
pected path length of the i-th region in T. The path length is simply the number of
weak-learners (or split-nodes) on the path to the i-th region. The decision tree should
closely duplicate the decision regions of the boosting classifier as an optimisation
constraint: the regions that do not share the same class label c(Ri) must not be put
in the same leaf-node of the tree. Any regions of don’t care labels are allowed to be
merged with other regions for the shortest path possible.

The boolean expression for the table in Figure 22 can be minimised by optimally
joining the regions that share the same class label or don’t care label as

w1w2w3∨w1w2w3∨w1w2w3∨w1w2w3

−→ w1∨w1w2w3
(16)

where ∨ denotes OR operator. The minimised expression has a smaller number of
terms. Only the two terms, w1 and w1w2w3 are remained representing the joint
regions R5−R8 and R4 respectively. A short tree is then built from the minimised
boolean expression by placing more frequent variables at the top of the tree (see
Figure 22(right)). The method for Boolean expression minimisation is close, but not
suited to our problem that involves a large number of variables i.e., weak-learners.
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Fig. 22 Boolean expression minimisation for an optimally short tree. (a) A boosting classi-
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table and the boolean expression is minimised (middle). An optimal short tree is built on the
minimum expression (right).

Furthermore, all regions are treated with equal importance in the kind of methods,
while an optimally short tree is learnt by considering data distribution i.e., region
prior in Equation 15.

4.1.2 Growing a Super Tree

We propose a novel boolean optimisation method for obtaining a reasonably short
tree for a large number of weak-learners of a boosting classifier. The classifier infor-
mation is efficiently packed by using the region coding and a tree is grown by max-
imising the region information gain. The base algorithm is explained here, see [46]
for its limitations and an improved method. The number of primitive regions 2m is
intractable when m is large. Regions Ri that are occupied by any training data points
are only taken as input s.t. p(Ri) > 0. The number of input regions is thus smaller
than the number of data points. Regions with no data points are labeled don’t care.

Huffman coding [40] is related to our optimisation. It minimises the weighted (by
region prior in our problem) path length of code (region). The technique works by
creating a binary tree of nodes by maximising the entropy-based information gain.
We similarly grow a tree based on the region information gain for an optimally short
tree. For a certain weak-learner wj, j = 1, ...,m, the regions in the left split and the
right split w.r.t. the weak-learner are readily given from the boolean expressions as

Rl = {Ri|B(Ri)∧w1 · · ·w j · · ·wm) = 0}
Rr = Rn \Rl

(17)

where Rn is the set of regions arriving at the node n and ∧ is AND operator. At each
node, it is found the weak-learner that maximises

Δ I =−∑Rl
p

∑Rn p
E(Rl)− ∑Rr p

∑Rn p
E(Rr) (18)

where p is the region prior and E is the entropy function of the region class distri-
bution, which is
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Algorithm: Growing a super tree

Input: a set of data point regions R encoded by {B,c, p}
Output: a decision tree

1.Start with a root node n = 1 containing the list of all regions Rn.
2.For i=1,...,m
3. Spit the node: (Rl ,Rr) = split(Rn,wi) by (17).
4. Compute the gain: Δ I = gain(Rl ,Rr) by (18).
5.Find w∗i that maximises the information gain.
6.If the gain is sufficient, save it as a split node. Else, save it as a leaf node.
7.Go to a child of split node and recurse the steps 2-6 setting Rn = Rl or Rr.

Fig. 23 Pseudocode of the algorithm.

Q(c∗) =∑
R∗c

p, where R∗c = {Ri|c(Ri) = c∗}. (19)

The node splitting is continued until all regions in a node have the coherent region la-
bel. The key ideas in the method have two-folds: 1) growing a tree from the decision
regions and 2) using the region prior (data distribution). Compared to conventional
decision trees built on data points, the proposed tree is grown upon smooth decision
regions, guaranteeing better generalisation. Using the region prior helps getting an
optimally short tree in the sense of average path length of data points. See Figure 23
for the pseudo-code of the proposed algorithm.

4.1.3 Cascade of Super Tree and Fast-Exit

Designing a cascade involves a number of parameters to set. The setting is more
difficult with more stages. Our solution explained in the previous section can be
seen as a convenient way of speeding up a boosting classifier up to several tens of
weak-learners without need of a multi-stage cascade. We use a two stage cascade to
cope with any larger number of weak-learners of a boosting classifier. It places the
super tree in the first stage and the fast-exit method in the second stage. The fast-
exit method, which yields the same accuracy as a boosting classifier of any number
of weak-learners, is required to meet the target accuracy of a cascade. We first de-
signed a two-stage cascade of standard boosting classifiers in a conventional way,
by varying the number of weak-learners (but limiting the number of weak-learners
of the first stage to less than a hundred) and the thresholds. Then, the two standard
boosting classifiers were replaced with the super-tree and the fast-exit method. The
proposed cascade significantly speeds up a two-stage cascade of standard boosting
classifiers and the same of the fast-exits at both stages, as well as a single boosting
classifier (see Section 4.2).
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Fig. 24 Experimental results on the synthetic data. Examples of 2D synthetic data sets (left).
Super tree obtains the same accuracy as the booting classifier significantly shortening the
average path length (right).

4.2 Experiments and Discussions

Classification of Synthetic 2D Data

We have made twelve 2D synthetic data sets. Data points of two classes were gen-
erated from Gaussian mixtures as exemplified in Figure 24. The six test sets were
created by randomly perturbing the train sets. We have compared the two methods
here: a boosting classifier (AnyBoost implementation [9]) and the proposed tree us-
ing the data point regions. Vertical and horizontal lines are weak-learners of boost-
ing. Figure 24(right) shows the results. The left and right y-axis in the graph show
the classification error rate and the average path length i.e., number of weak-learners
used per point respectively. Note first that the both methods do drop the error rate
when the number of weak-learners is increased indicating good generalisation. The
proposed method exhibited the same accuracy as the boosting classifier for all num-
ber of weak-learners. While the boosting classifier linearly increased the average
path length for the number of weak-learners, the proposed method quickly con-
verged significantly reducing down the average path length. At 40 weak-learners,
the super tree speeds up the boosting classifier by 16 times.

Object Detection

For training, we used the MPEG-7 face data set [41] that has 11,845 face images
collected from a few public face data sets such as Yale and XM2VTS, and non-
public face data sets. BANCA face set (520 faces) and Caltech background image
sets (900 images) were exploited for bootstrapping. The total number of negative-
class images for training, which were either bootstrapped or randomly drawn, is
50,128. We used 21,780 Haar-like features on integral images as weak-learners.
We have tested on the MIT+CMU frontal face test set [12] which consists of 130
images with 507 labeled frontal faces. The 507 face and 57000 random image
patches were cropped and resized into 24x24 images. Example images are shown in
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MPEG-7 face data Caltech background dataset

BANCA 
face set

MIT+CMU face test setHaar-like features

Fig. 25 Example features (weak-learners) and face images used.

No. of 
weak 

learners

Boosting Fast exit (cascade) Super tree (cascade)

False
positives

False
negatives

Average
path length

False
positives

False
negatives

Average path 
length

False
positives

False
negatives

Average
path length

20 501 120 20 501 120 11.70 476 122 7.51

40 264 126 40 264 126 23.26 231 127 12.23

60 222 143 60 222 143 37.24 212 142 14.38

100 148 146 100 148 (144) 146 (149) 69.28 (37.4) (145) (152) (15.1)

200 120 143 200 120 (146) 143 (148) 146.19 (38.1) (128) (146) (15.8)

Fig. 26 Experimental results on the face images. The numbers in the the brackets are for the
two-stage cascades.

Figure 25. The methods compared include a standard boosting classifier, Fast exit,
the cascade of two Fast exits, Super tree and the two-stage cascade of Super tree
and Fast-exit. For the super tree, we used the extended regions [46]. Fixing the ac-
curacy at 0 threshold, we have compared the average path lengths of the methods
in Figure 26. For all different numbers of weak-learners, the super tree significantly
reduces the average path length of the boosting classifier and the fast exit. The two-
stage cascade solution of 60 weak-learner super tree and 200 weak-learner fast exit
speeded up the standard boosting by 6.6-12.7 times and even the two-stage cas-
cade of 60 and 200 weak-learner fast exits by 2.5 times. Note that the super tree
exploits various combinations of weak-learners (i.e., paths) for an optimal classifi-
cation speed, whereas the fast exit takes the combinations always in the order of the
weak-learner weights. One can also compare the results of [35] with ours using the
standard boosting and the fast-exit as proxies. Whereas the solution in [35] didn’t
gain much over the boosting and the fast exit method, ours significantly improved
the both. More importantly, the method [35] has been tested only for 5 or 10 weak
learners whereas our method in a single stage is conveniently scalable up to several
tens of weak learners.

Single conventional decision trees of various pruning [37] were very poor. The
best accuracy among those of the different pruned trees (false positives: 1995/false
negatives: 120) is by far worse than that of the super tree of 20 weak-learners (false
positives: 476/false negatives: 122). The super tree was even shorter than the de-
cision tree: the depth of the super tree and conventional tree was about 7.5 and 9
respectively.
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Fig. 27 Segmentation results. Pixels classified into the building class by Super tree (or Boost-
ing) are shown by a darker hue.

Although the comparison has been made on the two-stage cascades, the proposed
method affords a speed up over a standard multi-stage boosting cascade by replacing
each stage of a boosting classifier in the cascade with a Super Tree. The speed gains
over the different numbers of weak-learners in a single stage boosting classifier are
reported in Figure 26. In the other sense, the proposed method can be seen as a
convenient way of obtaining the comparable speed-up to a multi-stage cascade by
the single super tree (or the proposed two-stage cascade).

Segmentation by pixel-wise classification

The car driving sequences [42] were exploited for the experiment. Boosting classi-
fier and super tree were trained for the binary problem for the building class against
non-building class. 1323 DCT features were drawn from 21x21 RGB image patch
as weak-learners. The train set consisted of 7143 positive and 23217 negative pix-
els from 184 images of 11x15 pixel resolution. Randomisation in learning (simi-
larly to [45]) reduced the train time of the boosting classifier. The test set contained
38445 points from 233 images. The correct recognition rate of Boosting of 40 weak-
learners was 0.71 (as global accuracy) or 0.736 (as average class accuracy). The
super tree learnt by 10 extended regions per region obtained the close accuracy as
0.70 (as global accuracy) or 0.728 (as average class accuracy) using only 15 weak-
learners on average. The accuracy obtained seems comparable to [42]. Figure 27
shows the segmentation results. The blocky effect was due to the low pixel image
resolution used.

Discussions

We have proposed a novel way to speed up a boosting classifier. The problem is
formularised as boolean optimisation and a new optimisation method is proposed
for a large number of weak-learners. The tree grown from the decision regions of a
boosting classifier, called Super tree, provides many short paths and preserves the
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Boosting decision regions. The single super tree delivers the close accuracy to a
boosting classifier with a great speed-up for up to several tens of weak-learners. The
proposed two stage cascade allows any number of weak-learners. Experiments have
shown that the tree obtained is reasonably short in terms of average path length
outperforming a standard boosting classifier, fast exit, their cascade. The method
has been also demonstrated for segmentation problems.

5 Summary and Conclusion

We have formulated a novel discriminative co-clustering problem of images and
features, and have presented the solution called MCBoost by simultaneously learn-
ing multiple boosting classifiers. Each boosting classifier in the method cooperates
and competes with others, taking expertise on a subset of images. The method has
been shown to yield meaningful co-clusters of images and features, significantly
outperforming the conventional designs of single or multiple boosting classifiers.

The MCBoost method has been extended into a online version with a soft parti-
tioning of the input space for object tracking. It incorporated a weighting function
Q, which ensures that coherent clusters are formed, in the MCBoost framework.
Whereas existing single classifier trackers tend to adapt to a single appearance mode,
forgetting previous modes, the method called MCBQ allows tracking during rapid
pose changes, since it captures multiple appearances. The method can also be seen
as a multi-class extension of the MIL tracker [22].

Lastly, we have proposed a novel way to convert a standard boosting classifier
into a decision tree for speeding up. The conversion problem is formularised as
boolean optimisation and a new optimisation method is proposed for a large number
of weak-learners. The tree grown from the decision regions of a boosting classifier,
called Super tree, provides many short paths (i.e., speeding up the evaluation time)
and preserves the Boosting decision regions (i.e., the same accuracy). In the ex-
periments, the super tree outperformed a standard boosting classifier, fast exit, their
cascade in speed, delivering the same accuracy to that of an input boosting classifier.

Many visual recognition problems are formulated as classification problems of
image sub-windows. Every possible sub-window, across pixels and scales, is evalu-
ated to decide whether it contains an object of interest or not. The number of sub-
windows is often massive, requiring the evaluation of each sub-window in a very
fast manner. This study has presented required efficient classification methods. We
began with a standard boosting method and have introduced largely three exten-
sions of it to improve the performance in both accuracy and time. Major issues for
future work include a more principled way to select the number of boosting classi-
fiers in MCBoost and to form a forest of Super Trees by randomisation (similarity
to Random Forests [36]). See also the discussions of each section.

Acknowledgements. Section2, Section 3 and Section 4 have been compiled from the au-
thors’ previous publications [31, 34] and [46] respectively.
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Simultaneous Detection and Tracking
with Multiple Cameras

Murtaza Taj and Andrea Cavallaro

1 Introduction

Tracking targets using multiple cameras is an important processing step for ap-
plications such as sports analysis, traffic monitoring, behavior detection and event
recognition. The multi-camera tracking problem has been mostly addressed in the
literature as detection-based tracking: objects of interest (targets) are first detected
and then associated over time [1]. Data from different cameras can be combined
either after tracking (in track-first approaches) or before tracking (in fuse-first
approaches).

Track-first approaches localize and track objects in each camera view [2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12]. Then the tracks are projected onto a common fusion space
(usually a common view or ground plane) to generate extended tracks across the
camera network. Track-first approaches solve the correspondence problem in each
camera view as well as on the fusion space.

Fuse-first approaches combine the information from multiple cameras prior to
tracking [13, 14, 15, 16]. The fused data can be either the projection of raw pixels
from each view or of foreground pixels only [17] and is referred to as detection
volume or occupancy mask. In general, a detection step is required to localize the
targets in the detection volume prior to tracking. Alternatively, simultaneous de-
tection and tracking can be performed that does not require an explicit detection
step [18, 19, 20]. In this case, the evidence of existence of a track over time is used
to declare the presence of a target. These strategies are also referred in literature
as track-before-detect approaches [21] (Fig. 1) and will be the main focus of this
chapter.
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Thresholding/
binarization

Object tracking
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track-before-detect

(b)

Fig. 1 (a) Detection-based tracking (b) Simultaneous detection and tracking via track-before-
detect.

2 Multi-camera Tracking: A Brief Overview

Track-first multi-camera trackers fuse trajectory information from each cameras on
a reference-view [10, 8] or on a top view of the scene [2, 3, 7, 9]. The tracking
process in each camera may be working independently [10, 2] or in collaboration
with the tracking processes in other cameras [3, 9]. Non-collaborative tracking can
be performed using a multi-target tracker based on graph matching on each camera,
followed by fusion on the top view using feature clustering [2]. Candidate tracks
are projected back on the image view for further validation. In collaborative track-
ing, track estimates in one view are used as part of the measurement in another
view [3, 7, 9]. In [3], targets are first tracked using a particle filter in each view.
Then the particles and the principle axis lines of each target are projected onto
the top view. The intersection of these lines is used as the target locations on the
top view. The particles in each view are sampled from camera-view particles and
from top-view particles. Similarly, in [9], multiple independent regular particle fil-
ters (MIPFs) are used to track each target in each camera view. The posterior in
one camera is computed by using the measurements from all the cameras. Likewise,
in [7] the 2D estimates of the target state from each camera view are projected onto
the top view. These estimates are then used as observations for a Gaussian Mixture
Probability Hypothesis Density (GMPHD) filter for 3D tracking on the top view.

Fuse-first multi-camera trackers perform detection and tracking on the fused
data [13, 14, 15, 16]. Similar to [3], in [16] the vertical axes of a target across
views are mapped on the top-view plane and their intersection point on the ground
is computed to obtain the feet location of a person (target). These top-view feet loca-
tions are then tracked using a particle filter. Projecting only feet locations make this
approach sensitive to detection errors in camera views and inapplicable in crowded
scenarios where feet locations may not be visible. To avoid this problem, in [14] the
foreground mask from each camera view is projected onto the top view to obtain
an occupancy map. The tracking of each object is performed using the Viterbi algo-
rithm. This approach can only process a batch of N frames at a time thus introducing
latency in the generation of the results.
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Simultaneous detection and tracking can be performed via track-before-detect
(TBD), an approach that considers the input signal as a measurement. This mea-
surement is a highly non-linear function of the target state and can be solved ei-
ther by discretization of the state [22] or by employing non-linear state estimation
techniques, such as particle filtering (PF) [23], which are computationally less ex-
pensive. A recursive Bayesian single-target TBD is proposed in [24] using PF. This
method assumes a point target and extends the target state with the signal intensity,
based on the assumption that the intensity related to the target is unknown. This re-
sults in filtering components belonging to the noise only. To further improve robust-
ness to noise, a gradual change in number of targets can be imposed by extending
the target state with an existence variable and the use of a jump Markov model [25].
Examples of adaptation of the TBD algorithm to real applications include multi-
target multi-microphone tracking algorithm applied to audio [26], tracking in single
sensor infra-red sequences and multi-target multi-camera tracking [20].

A summary of the state-of-the-art multi-camera tracking approaches is shown in
Table 1, whereas more detailed discussions can be found in [27, 28].

Table 1 Multi-camera track-first and fuse-first algorithms. (Key: GMPHD: Gaussian Mix-
ture Probability Hypothesis Density filter; BT: Bayes tracker; KF: Kalman filter; PF: Particle
filter; GM: Graph matching; CFI: Caratheodory-Fejer Interpolation; VA: Viterbi algorithm;
MGC: Minimum graph cut; M: Manual; A: Automatic)

tr
ac

k-
fir

st

Ref. Features Algo. Calib. Multi-target
[2] 2D position, size, velocity GM M Yes
[3] 2D position, size PF M No
[4] position, velocity, size and color any A NA
[6] pixels, manifold learning CFI No Yes
[7] position, size and color histogram GMPHD M Yes
[8] 2D position, size, velocity KF M No
[9] 5D state space using ellipses PF M No
[10] 2D position, height and intensity BT M No
[11] field–of–view lines any A NA

fu
se

-fi
rs

t [13] multiple planes occupancy map MGC A Yes
[14] color and motion VA M Yes
[15] head position BT M Yes
[16] vertical axis of the target, ground position PF M Yes
[20] signal intensity PF M Yes

3 Multi-camera Detection Volume

Let a wide area be monitored by a set C = {C1, · · · ,CN} of N cameras. Prior to per-
forming multi-camera tracking, let the foreground from each camera cth be projected
on the top view π . This transformation can be performed through a projection matrix
computed using corresponding points [29]. To further improve the effectiveness of
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Fig. 2 Example of multi-camera detection volume: (a) 2D view; (b) 3D view.

(a) (b)

Fig. 3 Example of parallax errors. (a) Crop of a camera view with 3 targets. (b) Correspond-
ing detection volume showing 3 high intensity regions (the targets) and a 4th region generated
by parallax error.

tracking in the fused domain, a multi-level homography is used in [30, 13]. The cor-
respondence between multiple views is established automatically using SIFT fea-
tures, followed by RANSAC to reject outliers. This procedure generates a planar
homography which is then used to compute multi-level homographies along the
vertical vanishing points. This results in multiple projection planes that are paral-
lel to the top-view. These projections on multiple planes can be treated separately
to obtain the information about the shape of the target [13] or can be collapsed to
obtain a detection volume (Fig. 2).

The signal intensity at each position in the detection volume is proportional to
the number of foreground pixels being projected on that position. By using a multi-
level homography, the pixels representing different portions of a person in the image
view along the vertical axis (feet, legs, torso, neck, head) are projected around the
same position on the top view, thus increasing the signal intensity around the feet
location: each object therefore occupies multiple pixels on the top view (Fig. 2(a)).
The signal strength also depends on the number of cameras observing a region, as
this results in points contributed from multiple cameras being projected on the same
location on the top view. However, when an object is projected on the plane, also
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pixels that do not belong to that plane are projected incorrectly creating a shadow
of the object along the plane. These projected shadows from multiple targets can
overlap with each other and create false signal intensities in the detection volume.
These noise components are referred to as parallax errors (Fig. 3), which have to
be accounted for by simultaneous detection and tracking approaches.

4 Track-Before-Detect on the Detection Volume

Prior to discussing the multi-target formulation of simultaneous detection and track-
ing on the detection volume, let us first introduce the single-target track-before-
detect formulation based on particle filtering [24].

4.1 Single Target Track-Before-Detect

Let xk be the target state vector at time k, using a discrete time model with a fixed
sampling period τ . The state can be defined as

xk = (xk, ẋk,yk, ẏk, Ik)
T , (1)

where (xk,yk) are the position components, (ẋk, ẏk) are the velocity components and
Ik is the value of the target signal strength (intensity) at time k at position (xk,yk).
As mentioned in the previous section, the signal intensity is determined, when using
foreground masks, by the number of foreground pixels being projected in a specific
position. The state evolution can be modeled as

xk = f (xk−1,N p
k ), (2)

where f (.) is the state transition function and N p
k is the process noise. For a linear

stochastic process, the state evolution can be expressed as

xk = Fxk−1 +N p
k , (3)

where F is the state transition matrix, defined as

F =

⎡
⎣ B 02×2 02×1

02×2 B 02×1

01×2 01×2 1

⎤
⎦ ,B =

[
1 τ
0 1

]
(4)

where 0m×n denotes an m× n matrix of zeros and τ is the sampling interval. The
process noise N p

k models the disturbances affecting the target state and is gener-
ally modeled as a zero mean Gaussian random variable [21] with covariance Q,
defined as
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Q =

⎡
⎣ D 02×2 02×1

02×2 D 02×1

01×2 01×2 q2τ

⎤
⎦ ,D =

[ q1
3 τ

3 q1
3 τ

2

q1
2 τ

2 q1τ

]
, (5)

where q1 and q2 are the process noise in target motion and intensity.
Let zk = {zk(i, j) : i = 1, · · ·W, j = 1, · · · ,H} be the measurement, at each time

k, encoded in a W ×H resolution image. At each pixel position, the measurement
intensity zk(i, j) is either due to the presence of the target or due to measurement
noiseNm

k ; that is

zk(i, j) =

{
hk(i, j)(xk)+Nm

k (i, j) if target is present

Nm
k (i, j) if target is not present

. (6)

Nm
k is modeled as a zero mean Gaussian sequence which is assumed to be mutually

independent from the process noise. hk(i, j)(.) is the contribution of the target inten-
sity at pixel position (i, j). In the case of a point target, the distribution of the target
intensity over the surrounding pixels will be only due to the sensor point spread
function and can be approximated as [21]

hk(i, j)(xk)≈ ΔxΔyIk

2πA2 exp

(
− (iΔx− xk)

2 +( jΔy− yk)
2

2A2

)
, (7)

where A models the amount of blurring introduced by the sensor and Δx× Δy is
the size in pixels of the segment centered at (iΔx, jΔy). This indicates that each
target occupies multiple pixels in the measurement zk, instead of being a point target
(Fig. 2(a-b)).

Given the set of measurements Zk = {zm|m = 1, · · · ,k} up to time k, the objec-
tive is to recursively quantify some degree of belief in the state xk taking different
values, i.e., to estimate the posterior pdf p(xk|Zk). Using the Bayesian recursion,
the posterior pdf p(xk|Zk) can be computed in two steps: prediction and update.
In the prediction step, the prior density of the state at time k is obtained using the
Chapman-Kolmogorov equation:

p(xk|Zk−1) =

∫
p(xk|xk−1)p(xk−1|Zk−1)dxk−1, (8)

where p(xk|xk−1) is the transition density defined by the target model (Eq. 2) and
p(xk−1|Zk−1) is the posterior at time k− 1. The update step is carried out using the
measurement at time k by applying Bayes’ rule:

p(xk|Zk) =
p(zk|xk)p(xk|Zk−1)∫

p(zk|xk)p(xk|Zk−1)dxk
, (9)

where p(zk|xk) is the likelihood function.
The above algorithm can be implemented using a Sampling Importance Resam-

pling (SIR) particle filter [23] where a posterior density is represented by a set of
particles each with associated weight {ωn

k ,x
n
k}.
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4.2 Track-Before-Detect Particle Filter

Particle filtering approximates the posterior density with a set of particles. In the
prediction step, two sets of particles are drawn to estimate the predicted density,
namely new-born particles and surviving particles. The new-born particles are the
set of Jk particles for which the target state is drawn as a sample from a proposal
distribution p(xk|Zk). The proposal distribution p(xk|Zk) could be any appropriate
distribution, such as a uniform distribution where at each position (xk,yk) in the
measurement zk, equal number of particles are drawn. Such a distribution is appro-
priate when the signal-to-noise ratio (SNR) is very low. In case of moderate or high
SNR, the proposal distribution p(xk|Zk) can be the measurement zk itself, normal-
ized between zero and 1 such that at each position (xk,yk) in the measurement zk the
number of particles drawn is proportional to the signal intensity Ik(xk,yk) (Fig. 2(a-
b)). The surviving particles are the set of Lk−1 particles that continue to stay alive.
These particles are generated from the proposal density qk(xk|xk−1,Zk) based on the
target dynamic model such that the current state of each of the surviving particles is
estimated by applying Eq. 3 (Fig. 8(b)).

Particle filtering approximates the densities p(xk|Zk) with a sum of Lk−1 + Jk

Dirac functions centered in
{

xn
k

}
n=1,...,Lk−1+Jk

as

p(xk|Zk)≈
Lk−1+Jk

∑
n=1

ωn
k δ (xk−xn

k) , (10)

where ωn
k are the weights associated with the particles. The weights are calculated

in [23] as

ωn
k ∝ ωn

k−1

p(zk|xn
k)p(xn

k|xn
k−1)

q(xn
k|xn

k−1,zk)
. (11)

q(.) is the importance density function. When q(.)= p(xk|xn
k−1) (i.e., the transitional

prior), then
ωn

k ∝ ωn
k−1 p(zk|xn

k−1). (12)

In the update step, for each pixel (i, j), the likelihood p(zk(i, j)|xn
k), for the com-

bined set of Lk−1 + Jk particles is computed. Given the sensor model defined in
Eq. 6, the likelihood function can be expressed as [24]

p(zk|xk) =

{
∏i=1∏ j=1 pS+N (zk(i, j)|xn

k) if a target is present

pN (zk(i, j)) if a target is not present
, (13)

where pN (zk(i, j)) is the pdf of the background noise in pixel (i, j) and pS+N (zk

(i, j)|xn
k) is the likelihood of the target signal affected by noise in pixel (i, j). The

product between the pdf values computed for each pixel (i, j) is based on the as-
sumption that the measurement noiseNm

k (i, j) is independent from pixel to pixel.
The final likelihood is obtained by taking the likelihood ratio in pixel (i, j) for a

target in state xn
k as
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(a) (b)

Fig. 4 Sample cumulative of particle weights. (a) Degeneracy problem showing all but one
particle having negligible normalized weights. (b) The nth particle xn

k has higher chances of
being selected due to having high weight ωn

k .

p(zk(i, j)|xn
k) =

pS+N (zk(i, j)|xn
k)

pN (zk(i, j))

= exp

(
−hk(i, j)(xk)(hk(i, j)(xk)− 2zk(i, j))

2A2

)
. (14)

Since the pixels are assumed to be conditionally independent, the likelihood of the
whole image is computed by taking the product over the pixels; thus, the updated
particle weights are computed as

ω̃n
k|k−1 = ∏

i=wi(xn
k|k−1)

∏
j=w j(xn

k|k−1)

p(zk(i, j)|xn
k), (15)

where wi(.) and wj(.) indicates that only the pixels affected by the target are used
in the likelihood computation which are selected by using a fixed size window. The
weights are finally normalized with the sum of all weights Ωk = ∑Lk−1+Jk

n=1 ωn
k|k−1 as

ωn
k|k−1 =

ω̃n
k|k−1

Ωk
. (16)

The variance of these importance weights ωk|k−1 can only increase over time [31].
This means that after certain number of particle filtering steps, all but one parti-
cle will have negligible normalized weights (Fig. 4(a)). This phenomenon is called
the degeneracy problem [21]. To avoid the degeneracy of particles, resampling is
applied which eliminates samples with low importance weights and replicates sam-
ples with high importance weights by using the cumulative sum of particle weights
(Fig. 4(b)). The combined set of Lk−1 + Jk particles are resampled to reduce the
number to Lk only by selecting particles for which ωn

k > λω , where λω is the mini-
mum allowed particle weight. This process involves generating Lk random variable
from the uniform distribution on the interval [0, 1]. For each of the Lk values, a
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Fig. 5 Sample single target track-before-detect results with varying SNR values: (Row 1)
sample frames from input data without noise indicating a target with hotter values. (Row 2)
sample frames from input data with noise illustrating that target is difficult to detect by visual
inspection at low SNR. (Row 3) Tracking results (mean particle position for every k). (a) SNR
= 18.3422dB, (b) SNR = 8.6969dB and (c) SNR = 6.2613dB. (Blue dots: estimated positions;
green dashes: ground truth).

particle whose weight corresponds to that value is propagated. The resampled par-
ticles weights are set to ωn

k−1 = 1/(Lk−1 + Jk) ∀ n. This means there is no need to
pass on the importance weights from one time step to the next and Eq. 12 can be
simplified to

ωn
k ∝ p(zk|xn

k−1). (17)

That is, the weights are proportional to the likelihood function.
Figure 5 shows an example of single target track-before-detect particle filter using

three different SNR values of synthetic data. The synthetic data is generated by
computing a target track using a motion model. This track is then converted into an
input image of resolution WxH where the position of the target is represented by
a Gaussian with standard deviation of 2 pixels (Fig. 5 (Row 1)). White Gaussian
noise is then added on this image multiple times to achieve a signal with different
SNR values (Fig. 5 (Row 2)). Although with SNR= 8.6969dB and SNR= 6.2613dB
the target cannot be observed visually due the noise (Fig. 5 (Row 2)(b-c)), it was
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(a) (b)

Fig. 6 Examples of 2D and 3D visualizations of the detection volume where measurements
at each position corresponding to a target can receive contributions also from other targets.

correctly tracked (Fig. 5 (Row 3)(b-c)). When SNR= 6.2613dB, the algorithm had
some difficulties in identifying the target location; however, once enough particles
were drawn around the target, it was tracked consistently.

4.3 Multi-camera, Multi-target Track-Before-Detect

In the case of multiple targets, the measurement at each pixel (i, j) can have a con-
tribution from all the targets (Fig. 6) and Eq. 6 can be modified to

zk(i, j) =

{
∑

NO
k

t=1 hk(i, j)(xt
k)+Nk(i, j) if NO

k targets present at time k

Nk(i, j) if no target present
. (18)

The approximation shown in Eq. 7 is based on a point target assumption and is
a truncated 2D Gaussian density with circular symmetry. A similar approximation
can be used in the case of multiple targets by tuning the values for Δx, Δy and A,
respectively. This approach aims at filtering the noise due to the parallax error (see
Fig. 3).

A block diagram of the multi-target track-before-detect particle filtering is shown
in Fig. 7 and its details are discussed below.

Fig. 7 Block diagram of the multi-target track-before-detect particle filter approach.
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4.3.1 Prediction and Update

The prediction step remains the same as in the case of single targets. If all targets fol-
low the same motion model, this prediction step is correct as each particle contains
the velocity components (ẋk, ẏk) of the target it represents. Tracking targets with a
different dynamic model can be performed by incorporating Interacting Multiple
Models (IMM) [32].

As different targets may have different intensity levels and in TBD the weight
update is a function of the target intensity, this results in lower weight assignment
to weaker targets. To address this issue each target can be considered individually
in the update step and Eq. 15 can be re-written for multiple targets TBD as

ω̃nt
k|k−1 = ∏

i∈wi(xnt
k|k−1)

∏
j∈w j(xnt

k|k−1)

p(zk(i, j)|xn
k), (19)

where xnt
k|k−1 is the nth particle at time k belonging to the tth target. The weights are

normalized with the sum of all weights associated to tth target Ω t
k = ∑n∈t ωnt

k|k−1 as

ωnt
k|k−1 =

ω̃nt
k|k−1

ΩkΩ t
k
. (20)

Here the component Ωk is used to further normalize the weights so that they lie
between 0 and 1. This is used instead of the number of targets as there are some
particles generated using another proposal density p(xk|Zk).

4.3.2 Clustering

The particle filter may perform poorly when the posterior is multi-modal as the
result of the presence of multiple targets [33]. To solve this problem, an existence
variable and the jump Markov model [18, 25] can be used. However, this solution
requires that the total number of targets is known a priori. Alternatively, clustering
of the particles can be employed for which both parametric and non-parametric
approaches exist and the aforementioned limitation can be eliminated.

After the update step, the particles are clustered using mean-shift for the associa-
tion of an identity with each particle. Mean-shift clustering climbs the gradient of a
probability distribution to find the nearest dominant mode or peak [34]. Mean-shift
is preferred here as it is a non-parametric clustering technique that does not require
prior knowledge of the number of clusters, and does not constrain the shape of the
clusters.
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Given Lk−1 + Jk particles {xn
k,n = 1, · · · ,Lk−1 + Jk} on a 2-dimensional space

R
2 using (xk,yk) only, the multivariate kernel density estimate obtained with kernel
K(x) and bandwidth h is

f (xk) =
1

(Lk−1 + Jk)h2

Lk−1+Jk

∑
n=1

K
(

Xk−xn
k

h

)
. (21)

The bandwidth h is set as h = 2q1 based on the target covariance Q (see Eq. 5). The
mean-shift algorithm tends to maximize the density whose modes are located at the
zeros of the gradient� f (xk).

As this clustering may generate more clusters than targets in the scene, a cluster
merging process is performed to fuse similar clusters. The fusion can be based on
several criterias such as cluster population, density, mean and covariance. Finally,
an identity is assigned to each particle based on its cluster membership. If all the
particles in a cluster are new-born, they can be issued a new identity; otherwise all
cluster members can be assigned the identity with the highest population within the
cluster.

Figure 8(c) shows the particles before clustering, whereas the clustered particles
are shown in Fig. 8(d-f). In Fig. 8(d-f) each color indicates a unique cluster and
particles colored in dark blue in Fig. 8(d) are the pruned particles.

4.3.3 Resampling

Similar to the single target case, to avoid the degeneracy problem [23] particles
can be resampled. Resampling is performed according to the particle weights. Here
again the single target resampling strategy based on the cumulative distribution
function cpdf of particle weights will not work as it is insensitive to the particle
location. Particles with lower weights (such as those associated to new-born targets)
will not be able to have enough representation in the mixture distribution.

As shown in Fig. 9, ωn1
k , ωn2

k and ωn3
k are the weights for a particle representing

the state of target 1, 2 and 3, respectively. It can also be seen that ωn1
k > ωn2

k > ωn3
k

and hence different number of particles will be generated from their correspond-
ing particles. This process would result in an unfair resampling where more parti-
cles will be used to represent the state of a particular target because of its particle
weights. This will create a hindrance in initializing new tracks in the presence of
existing targets. To overcome this problem, the resampling can be performed indi-
vidually for each cluster: only the weights of the particles that are associated with
the cluster can be used to create a cumulative distribution function cpdf. The resam-
pling can then be performed for each cluster individually as for the single target case
(Fig. 4(b)).
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(a) (b)

(c) (d)

(e) (f)

Fig. 8 Sample results at intermediate steps of the multi-target track-before-detect particle fill-
tering. (a-b) Output at prediction step showing new-born and propagated particles. (c) Weight
assignment at update step. (d) Uniquely color-coded clusters of particles corresponding to tar-
gets and pruned particles (dark blue color). (e-f) Uniquely color-coded clusters of particles.

Fig. 9 Sample cumulative particle weights. The weights are associated with particles belong-
ing to different targets (ωn1

k , ωn2
k and ωn3

k ).
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C1C2

C4

C7

C6

(a) (b) (c)

(d) (e) (f)

Fig. 10 Multi-camera view of a scene: (a) configuration of cameras covering a basketball
court (excluding two top-mounted cameras). (b) View of camera 1. (c) View of camera 2. (d)
View of camera 4. (e) View of camera 6. (f) View of camera 7.

4.4 Discussion

The evaluation of the multi-target track-before-detect particle filter (MT-TBD-PF)
is performed on the APIDIS dataset, which consists of a basketball match sce-
nario captured using five partially overlapping cameras (Fig. 10(b-f)) and two top-
mounted with fish eye lenses. There are in total 12 targets in the video (10 players
and 2 referees). The players have similar appearances and are difficult to distinguish
from the background. Two types of detection volume are generated: one with 5 con-
tributing cameras (excluding the fish eye lens cameras) and one with contributing 7
cameras. The goal is to quantify the difference in performance when not using the
top-mounted cameras, as this camera positioning is generally not available.

The parameters used in the experiments are as follows. The minimum allowed
target weight is λω = 10−5. The bandwidth chosen for Mean Shift (MS) is h = 5,
which is appropriate for clustering particles generated around a target that is affected
by a blurring with A = 0.3733 and (Δx,Δy) = (1,1). The σ value for the likelihood
computation was set to 0.3. The tracking is done using 3000 particles per target.

A visualization of the results from the proposed approach is given in Fig. 11
(Row 2). The projection of the detection mask on the top view using the multi-
layer homography is in Fig. 11 (Row 1). Several challenges regarding the data can
be observed such as parallax error and different amounts of noisy intensity values
in different regions. The tracks generated on the top view are first reprojected onto
each camera view and then evaluated against the ground truth. Precision (Fig. 12
(a,c)) and sensitivity (Fig. 12 (b,d)) are computed for results obtained from both the
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(a) (b) (c)

Fig. 11 Sample fusion and multi-target tracking results on the top view for the APIDIS
dataset. (Row 1) Detection volume on the top view. (Row 2) Tracking results obtained with
the multi-camera track-before-detect particle filtering approach.

(a) (b)

(c) (d)

Fig. 12 Precision and sensitivity scores for cameras C1-C7 of the APIDIS dataset. (a-b) Pre-
cision and sensitivity of tracking results generated using detection volume obtained from 5
cameras. (c-d) Precision and sensitivity of tracking results generated using a detection volume
obtained from 7 cameras.

5-camera detection volume and the 7-camera detection volume, at 5 different sam-
pling intervals (τ). The sensitivity is increased slightly by 1.69% for tracking results
on the 7-camera detection volumes which indicates that similar tracking results can
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Fig. 13 Average per frame computation cost in milliseconds for image-based localization,
projection and fusion on top view and track-before-detect tracking on color video from 6
cameras having a resolution of 960×544 pixels.

be obtained in cases where the top mounted cameras with fish eye lens are not avail-
able, as in most multi-camera setups. The shift in precision and sensitivity for dif-
ferent cameras is due to the difference in the reprojection error on the image plane.

The computational cost for creating the detection volume and for multi-target
track-before-detect particle filter tracking is shown in Fig. 13. The cost refers to a
C/C++ implementation for image-based localization and a Matlab implementation
of the projection and fusion and MT-TBD-PF. The cost is computed per frame in
milliseconds using an input video from 6 cameras having a resolution of 960×544
and detection volume whose base resolution is 492× 288 on a Intel Core 2 Quad
CPU having speed of 2.39 GHz and 3.25GB RAM. It can be seen that the gen-
eration of the detection volume takes approximately 85% of the processing time,
whereas MT-TBD-PF takes the remaining 15% of the time (i.e., approximately 19
seconds per frame with 20 targets and 3000 particles per target). The major bottle-
neck in MT-TBD-PF is the update step, which takes approximately 17 seconds per
frame. This computation time could be greatly reduced by using an efficient C/C++
implementation on Graphical Processing Units (GPUs) [13].

5 Conclusions

An important step in multi-camera tracking is the fusion of information from mul-
tiple views. This fusion can be performed either prior to tracking or after the initial
detection and tracking step has been performed on the individual views. This chap-
ter discussed these two categories of multi-camera tracking, which are also known
as fuse-first and track-first strategies, respectively. In fuse-first strategies the target
detection step that is usually required prior to tracking can be avoided by employ-
ing simultaneous detection and tracking approaches that do not required explicit
thresholding of the data. In this context, a simultaneous detection and tracking ap-
proach known as multi-camera track-before-detect is discussed. This approach not
only eliminates the detection step after data fusion but also implicitly helps in re-
ducing false positives due to noise in the detection volume. The algorithm can be
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implemented using sampling importance resampling particle filtering. Multi-camera
information fusion for the generation of the detection volume is a computation-
ally expensive step compared to the simultaneous detection and tracking step that
incurs a relatively low cost while increasing the overall robustness against noisy
measurements.
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Applications of Computer Vision to Vehicles:
An Extreme Test

Alberto Broggi, Stefano Cattani, Paolo Medici, and Paolo Zani

1 Motivation

VisLab has been pioneering the world of autonomous driving since its early years;
in 1998 VisLab organized one of the most innovative experiments for that period: a
passenger car was equipped with sensing and actuation devices and was tested with
autonomous steering along a 2000+ km on Italian highways [5].

VisLab then contiuned its efforts within this very promising research domain;
it partnered with different companies and implemented the perception system of
TerraMax, the largest entry in the DARPA Grand Challenge. In 2005 TerraMax was
one of only 5 vehicles to successdully finish the race: about 220 km in autonomous
mode along the Mohave desert in Nevada [4].

Two years later, in 2007, VisLab took part in the next DARPA event -the Urban
Challenge- again on the TerraMax vehicle, which successfully qualified to take part
in the final event, but -during the race- suffered a hardware problem which prevented
it from finishing the test [9].

After these very successful experiments and implementations, VisLab decided to
undertake a challenge on its own: it started a new project aimed at fielding a vehi-
cle prototype able to move autonomously in most conditions. The vehicle’s name is
BRAiVE, short for BRAin-drIVE, and incorporates a large number of sensors and
a unique sensing technology. BRAiVE has been used as a test bed for the devel-
opment of a number of driver assistance systems based on the detction of vehicles,
lane markings, pedestrians, obstacles, traffic signs, parking spots, and many other
characteristics of the automotive environment.

BRAiVE was first presented at the IEEE Intelligent Vehicles Symplsium IV 2009
in Xi’an, China, and demoed to the participants. Thereafter it was also demoed as
an autonomous vehicle in many occasions, such as in downtown Rome, form the
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Fig. 1 The path of the autonomous driving demonstration held in Rome in September 2009.

Capitoline Hill (Campidoglio) to the Colosseum, along the path shown in Fig.1, in
September 2009.

All demos were successful since they were carefully prepared, the parameters fine
tuned, and the thresholds correctly set for that particular environment, illumination
and scenario. VisLab, then, felt the need to challenge its sensing systems along a
set of unpredictable scenarios, in order to check their performance in real world
settings, without the possibility to change parameters and adapt them to the current
situation.

VisLab therefore conceived a unique test: the idea was to drive for more than
10,000 km, day and night, on a set of uncontrolled scenarios, along unknown routes.
The final decision was to drive from Parma, Italy, to the World Expo, that in 2010
was in Shanghai, China: 13,000 km to be driven by autonomous vehicles in roughtly
3 months.

As a challenge into the challenge, VisLab selected electric vehicles to be equipped
with driverless technology. Nothing was changed in the original vehicles in order
not to decrease their original performance both in terms of speed and distance au-
tonomy. In fact, a solar panel was mounted on top of the vehicle to power all driver-
less technology: sensors, actuation devices, processing systems, satellite systems,
radio,...

This had to be the most extreme test so far for autonomous vehicles in the history
of vehicular robotics; other papers [?, ?] deal with logistic aspects and describe the
effort, while this paper describes the vision processing implemented on the vehicles
and the main results.

2 Sensors

2.1 Design Considerations

Sensors positioning has been based on VisLab past experience with other vehicles
and other projects[3, 7, 8]; however, the design of the vehicles is radically differ-
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(a) (b)

Fig. 2 Front and back views of the electric vans used during VIAC, with accessible sensors.

ent from the one adopted on BRAiVE [2], the most advanced prototype built by
VisLab to date. On the electric vans used during VIAC all the equipment has been
kept accessible for maintenance even in remote locations and in extreme conditions:
all sensors have been placed in easily reachable positions, cables and wires are eas-
ily identifiable, and PCs have been installed in a position that allows fast access
from both the booth and the internal back seats. On the other hand BRAiVE was
equipped with a completely different criterion in mind, as can be seen comparing
Fig. 1 and Fig. 2: all sensors and cabling were hidden, all actuation devices were
moved under the hood, and special care was taken to provide the car with a clean
and tidy appearance. The look of the new vehicles has been taken into account too,
albeit from a different perspective: given the number of media events planned dur-
ing the trip, keeping all the extra equipment in plain sight attracted more attention,
and made explaining the vehicles capabilities much easier.

All the electric vehicles have been equipped with the very same sensing, process-
ing, and actuation technologies, but can be used in different configurations (e.g., as
leader, followers, or standalone). The choice of setting up identical hardware and
software on each vehicle meant increasing the development time, but the possibility
of swapping the vehicles in operation has provided additional flexibility in case of
failures, and has allowed to increase the number of driving shifts, overcoming the
limited batteries autonomy.

No particularly expensive sensor has been considered in the design as well as
no sensor with special needs in terms of physical installation has been included.
This has been done on purpose, since the test aimed at evaluating technologies with
widespread practical applications. Special emphasis has been given to computer
vision since it provides a cost-effective way of sensing the environment; moreover it
has another great advantage over laserscanners: cameras can be installed in a variety
of positions on the vehicle (inside the cabin, on the roof, or within the headlights),
while laserscanners used for mid-long term sensing need to be placed in front of
it, usually behind the front bumper, where they are easily hit by rocks, debris, and
other objects.
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As shown in Fig. 2(a)(b) most of the sensors have been mounted outside the
vehicle, exposed to any kind of weather conditions.

2.2 Perception Systems

A total of seven cameras (5 forward and 2 backward looking) and four laserscanners
with different characteristics monitor all the area surrounding the vehicle, while a
unit combining a radio, a GPS and an IMU mounted on top of the van provides
self-localization and vehicle-to-vehicle communication capabilities. The following
sections contain a brief description of each perception system.

2.2.1 Panoramic Vision

The panoramic vision system (Fig. 3) provides a 180 degrees view of the space
in front of the vehicle by combining the images coming from 3 IEEE1394-A

(a)

(b)

Fig. 3 Panoramic Vision System: (a) the area monitored by the sensors, and (b) the cameras
installed behind the windshield.
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752×480 synchronized cameras, with 3.5 mm, 1/3 ” lenses. The resulting high res-
olution image is used to detect and track the leader vehicle even when approaching
a tight curve or a steep hill.

2.2.2 Lateral and Front LIDARs

Two single beam laserscanners are mounted right on the corners of the front bumper
(Fig. 4(a)(c)); they are used for close-range obstacle detection. Each laserscanner
has an aperture of about 270 degrees, while the perception depth is about 30 m.
Conversely, the front LIDAR unit is used to detect the presence of obstacles in
front of the vehicle in the mid-far range (Fig. 4(b)(c)); its four scan planes allow
robust detection even in case of strong pitching or terrain slopes up to 80 m, with an
aperture of about 100 degrees.

(a) (b)

(c)

Fig. 4 Lateral and front LIDARs: (a) the area covered by the lateral sensors and (b) by the
front one; (c) the laser units, mounted within the front bumper.

2.2.3 Front Stereo Vision and Off-Road LIDAR

The frontal stereo system (Fig. 5(a)(c)) exploits two 752×480 IEE1394-A cameras
with 4 mm, 1/3” lenses and a baseline of 80 cm to locate obstacles, and lane mark-
ings in front of the vehicle up to 40 m. While both this system and the front LIDAR



220 A. Broggi et al.

(a) (b)

(c)

Fig. 5 Front stereo vision and off-road LIDAR: (a) the area covered by the front cameras and
(b) by the off-road laserscanner; (c) the units mounted under the solar panel.

(a) (b)

(c)

Fig. 6 Back stereo vision and GPS/IMU unit.

cover the same area, they perform the detection task using technologies with differ-
ent modes of failure (e.g., low light conditions vs dust), thus increasing the overall
reliability. The mono beam laserscanner is pitched down so that the beam hits the
ground in front of the vehicle (Fig. 5(b)(c)) in order to provide information about
the presence of nearby ditches, bumps or rocks, especially when driving off-road.
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2.2.4 Back Stereo Vision and GPS/IMU Unit

The rear stereo system (Fig. 6(a)(c)) is used to locate obstacles nearby the vehicle
during backup manouvres. The GPS and inertial unit installed on top (Fig. 6(b)(c))
is used for vehicle localization; when running in leader-follwer mode the integrated
radio allows inter-vehicle communication.

3 Processing Systems

The sensors layout described in the previous Section provides extended sensing ca-
pabilities. Some of the algorithm that exploit these potentials are directly taken from
VisLab’s BRAiVE [2] experience, such as lane detection and stereo obstacle detec-
tion. Other algorithms were developed specifically for the VIAC expedition, to meet
the very peculiar requirements of such an ambitious challenge.

The sensing algorithms running on the vehicles are:

• Lane Detection: lane detection is a basic, yet fundamental component of au-
tonomous navigation; our algorithm requires just one camera and it is able to
detect both solid and dashed markings;

• Stereo Obstacle Detection: based on stereo SGM disparity engine, it provides
dense depth maps, in real time, and a reliable obstacle detection, taking into
account also the physical characteristics of the ego-vehicle

• Laser Obstacle Detection: putting together data coming from single and multi
beam laserscanners, this algorithm is able to perform a robust obstacle detection
and terrain removal;

• Vehicle Detection: when running in Leader Follower mode, the following ve-
hicle needs to detect the position of the leader vehicle; this is made coupling
laserscanner processing, for candidate selection, and vision processing, for can-
didate validation and leader identification.

3.1 Lane Detection

The overall system architecture is presented in Fig. 7: first an Inverse Perspective
Mapping (IPM) transformation [19, 1] is applied to the frame grabbed by the cam-
era, then a low-level filtering is performed to highlight the Dark-Light-Dark [23]
(DLD) patterns of the image; the resulting points are grouped together, and clus-
ters are finally approximated by continuous piecewise-linear functions. Once the
low-level processing is over, the resulting segment lists are compared to existing
lane markings in a tracking stage (Fig. 7), which produces a set of candidate lane
markings; moreover, non-tracked segments are also analyzed to extract additional
candidates. An expansion step is then performed, in order to join in any pertinent
non-connected component still present. Finally each candidate is assigned a score
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which is tested against an acceptance threshold to produce the end result. The lane
markings detection is carried out for solid and dashed markings, using slightly dif-
ferent algorithms, and the whole procedure is performed two times, one for single
and one for double lines.

Fig. 7 System architecture.

3.1.1 Low Level Processing

The low-level processing stage derives from the one used during the 2007 DARPA
Urban Challenge, described in [6]. First DLD and DLDLD transitions (with the
former corresponding to single lane marking, and the latter to double ones) are ex-
tracted from the IPM and stored in separate buffers; this operation is fast since the
filtering kernel is of constant size (5 and 11 pixels respectively).

After pattern extraction, a binarization step is performed: this process employs
a variable threshold proportional to the average luminance of the region, over a
window of size 32× 1 pixels; this helps to reduce the effects of shadows cast by
vehicles and roadside elements, like buildings, trees, and guard-rails. The resulting
pixels are then grouped together by a clustering algorithm which uses the expan-
sion mask illustrated in Fig. 8, with the processing taking place starting from the
bottom of the image. The various groups of points are then approximated using

Fig. 8 Clustering algorithm expansion mask: in blue, the reference pixel; in red, the candi-
dates for expansion. The topmost candidate helps to reduce the likelihood of cluster fragmen-
tation due to non-continuous groups of points (e.g. because of dirty or faded lane markings).
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piecewise-linear functions, so that each node on the polyline corresponds to an el-
ement of the cluster, and the maximum distance between any pixel within the label
and the closest segment is below a given threshold. While different solutions to
this problem exist (like the one described in [13]), the one adopted in this paper has
proven to be good enough to deal with the data produced by the preprocessing stage.

3.1.2 Lane Marking Extraction

Once the set of polylines has been extracted from the image the actual lane markings
extraction can take place. This process consists of three fundamental stages:

• tracking of markings detected in previous frames
• generation of new candidates
• expansion of the whole set of candidates (new and tracked)

that are carried out in that order both for solid and dashed markings, and are detailed
in the following.

3.1.3 Tracking and Generation

Candidate polylines are matched against existing lane markings, and only those
resulting close enough can be considered a valid correspondence. The fundamen-
tal issue to solve when performing this task is to define a distance function: a
number of well-known approaches to this problem exist, like the Hausdorff [14],
Frechét [11] and minimum Euclidean distances [24], but while they exhibit some
interesting mathematical properties, sometimes they can produce counter-intuitive
results; instead, area-based algorithms [21] seem to be more appropriate in this kind
of applications: building on this idea,

the distance between two polylines a and b becomes

d(a,b) = max(
2×area(a,b)

length(a)[V0,V1] + length(b)[V3,V2]
,dmin(a,b)) (1)

where length(p)[Vm,Vn] denotes the length of the polyline portion delimited by the
points Vm and Vn, area(a,b) is the area between the polylines (marked in light blue
in Fig. 9), and dmin(a,b) is the minimum distance between a and b.

When performing tracking, each solid lane marking tsi ∈ {ts0 . . . tsk} identified
at time T − 1 is used to compute the score

score(tsi,cs j) =
d(tsi,cs j)

length(cs j)
, j ∈ {0 . . .h−1} (2)

matching it against the candidates {cs0 . . .csh−1} generated by the low-level pro-
cessing stage at time T ; the candidate obtaining the lowest value is selected, and
used in the following expansion stage.
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Fig. 9 Distance between polylines. In light blue, the overlapping area; in red, boundary ver-
texes; in blue, the projections of one polyline ends onto the other.

Dashed lane marking tracking uses a different comparison criterion, since the
length of candidate dashes {cd0 . . .cdk−1} is usually too small to be reliable:

score(tdi,cd j) = d(tdi,cd j)
2 + x2

j , j ∈ {0 . . .k−1} (3)

with x j being the x component of the first vertex of cd j. This heuristic allows to
obtain as a winning candidate a dash that is near to the lane marking to track while
also being as close as possible to the camera, that is, in the IPM region that is more
likely to produce accurate results.

After the first dash has been determined, it is used as a starting point to join in
any other dash close to the originating lane marking (that is, tdi), iteratively building
a new polyline cp. The criterion adopted to perform this task aims at isolating can-
didates being close both to cp and to tdi, sorting dashes according to the following
comparison rule:

min(cdh,cdk) =

⎧⎪⎨
⎪⎩

cdh if d(cdh, tdi)< th and d(cdk, tdi)> th
cdk if d(cdh, tdi)> th and d(cdk, tdi)< th

argmin
cd∈{cdh,cdk}

(d(cd,cp)+ d(cd, tdi)) otherwise
(4)

Each time a dash is added to cp the remaining ones are sorted again using Eq. 4, until
no close dashes are left. To further improve the robustness of this step, dashes are
joined only if they satisfy the constraints illustrated in Fig. 10, and further explained
in 3.1.4.
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3.1.4 Expansion and Validation

Tracked and non-tracked polylines are iteratively analyzed to determine whether
any other compatible candidate exists; if it is found, its points are merged in, and
the search continues using the resulting polyline as the new reference. For both solid
and dashed lane markings, a common condition for inclusion is that the first vertex
of the candidate polyline must be close to the last vertex of the reference one, as
it is illustrated in Fig. 10; moreover, the orientation of the end segments must be
similar (that is, the angle ϕ in Fig. 10 must be small), and the connection angle (θ
in Fig. 10) must also be small. Dashed markings bear the additional constraint that
dash lengths and pauses between dashes must have a similar length.

Fig. 10 Compatibility test. In green, reference marking, in black, candidate polyline to join.
The candidate is considered for inclusion only if its first vertex falls inside the blue area
(determined by the parameters max_distance, max_aperture and lateral_saturation), and the
angles ϕ and θ are small enough.

When the search is over, a score is assigned to the resulting polyline p, to de-
termine whether it should be accepted as a valid lane marking or not. The value is
computed as

score(p) =
length(p)2

d((0,0), p)2 (5)

and if p has been successfully tracked, the old score is added to the current. Using
this approach means that lines starting far away from the vehicle are considered
valid only if they are consistently detected over a high number of frames, while
close, long lines are more easily accepted.
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Tracked lane markings are not discarded immediately in case of a missed detec-
tion; instead, they are kept as “ghosts” for up to 5 frames.1

3.1.5 Results

The algorithm proposed in this paper has been tested on image streams captured in
both highway and urban scenarios, in a variety of conditions. Fig. 11 contains some
samples from different image sequences, along with lane detections results.

(a) (b) (c)

(d) (e) (f)

Fig. 11 Some sample outputs in different situations: (a) Highway scenario; (b) Heavy traf-
fic; (c) A downhill intersection; (d) Construction area, with no false detections; (e) Uphill
motorway with shadows; (f) Nighttime highway under heavy rain.

In ideal working conditions outputs are correct (Fig. 11(a)), even in case of heavy
traffic (Fig. 11(b)), and tracking is very stable, with lines being continuously iden-
tified for up to 600 frames. Since no predefined model of the road is enforced atyp-
ical geometries can be handled as well, like in Fig. 11(c), where lane markings
leading to an intersection at the end of a downhill road are detected correctly. The
adopted score criterion shows its effectiveness in Fig. 11(d): no false detection is
introduced, despite the number of objects present in the scene, including a vehicle
right in front of the camera, the striped barriers on the left and the guard-rail on the
right. Fig. 11(e) and Fig. 11(f) contain the results obtained in two challengig situa-
tions, namely on a motorway with a lot of shadows, and under heavy rain at night:
in both cases the algorithm correctly detects the road markings.

1 The value has been determined empirically.
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3.2 Stereo Obstacle Detection

Processing happens following the steps presented in Fig. 12.

Fig. 12 System architecture.

• low-level processing — Bayer-patterned images acquired by the cameras are con-
verted to gray-scale, then lens distortion is corrected, and the stereo pair is recti-
fied. A vertical Sobel filtering is used to improve the subsequent matching phase;

• disparity map generation — stereo reconstruction is carried out; both correlation-
based and Semi-Global Matching (SGM) approaches have been tested ;

• disparity map post-processing — two filters are applied to further enhance the
map quality

• obstacle detection — actual obstacle detection takes place

3.2.1 Stereo Reconstruction

Given the tight development schedule, Disparity Space Image (DSI) generation was
implemented exploiting the already available window-based SAD correlation tech-
nique described in [10], with satisfactory results; nevertheless, in the months fol-
lowing VIAC an efficient implementation of the SGM algorithm has been devised,
which performs even better.

In order to generate a Disparity Space Image D the Semi-Global Matching algo-
rithm performs an energy minimization step. The energy function E(D) that has to
be globally minimized consists of two terms: the pixel-wise matching cost Edata(D)
and the smoothness constraint Esmooth(D):

E(D) = Edata(D)+Esmooth(D) (6)

The Edata(D) term is the sum of all pixel matching costs C for the disparities of D:

Edata(D) =∑
p

C(p,Dp) (7)

Instead of using mutual information as the pixel-wise matching function, as it is
done in [16], the Hamming distance of the Census transform of a 5× 5 window
cropped around p has been exploited, since it provides similar results [17, 12] while
reducing the overall computational burden.
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The Esmooth term adds a small penalty P1 to all pixels q in the neighborhood Np
of p, for which the disparity varies from p by one, and a higher penalty P2 if the
difference is greater:

Esmooth = ∑
q∈Np

P1T[|Dp−Dq|= 1]+

∑
q∈Np

P2T[|Dp−Dq|> 1]

with

T[x] =
{

1 if x is true
0 otherwise

The global minimization of E(D) is a NP complete problem, that SGM approxi-
mates by computing the values of E(D) along 1D paths from 8 directions towards
each pixel using dynamic programming. The costs L′r of each path r are aggregated
as described in Eq. 9 for each pixel p and disparity d:

L′r(p,d) =C(p,d)+min(L′r(p− r,d),

L′r(p− r,d− 1)+P1,L
′
r(p− r,d +1)+P1, (8)

min
i

L′r(p− r, i)+P2)

The final disparity value for each pixel is then determined by a winner-takes-all
strategy applied to the values of L′r. To further improve the results sub-pixel inter-
polation is performed as well as a median filter and a left-right consistency check.

In order to fully exploit the parallel processing capabilities of modern multi-core
CPUs and reach real-time frame rates, a multi-threaded, SIMD processing scheme
has been devised. The most time-consuming step of the SGM algorithm is path
accumulation, since it must be performed for each pixel, disparity, and path: to speed
up the processing, for each path direction the pixels are split into several independent
slices that are processed in parallel; moreover only the accumulated value is saved
into memory, while temporary data needed for incremental processing is kept into
the CPU registers2. Finally, when computing the results of Eq. 9 the Intel® SSE
instruction set is also used, outputting 16 disparity values at a time.

3.2.2 DSI Post-processing

The generated disparity map is post-processed to fix possible spurious values; this is
especially useful when using correlation-based stereo, where local minima are more
likely to introduce noise.

A first filter analyzes a 3×3 window around each DSI element, checking that its
disparity value is close to a sufficient number of neighbors, and marks it as invalid

2 Disparity search ranges of up to 128 are supported; over this threshold not enough XMM
CPU registers are available.
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in case this condition is not satisfied. After this step has been performed, invalid
pixels whose neighborhood has a variance lower than a fixed threshold are assigned
the average value of the surrounding elements.

The second filter uses IMU information to compute the vehicle trajectory be-
tween the previous and current frame acquisition, and checks the corresponding
disparity maps for consistency. At time T each point pi(u,v,d) of the depth map
DT is projected into the corresponding world point pw(xw,yw,zw) [15], which is in
turn projected back into DSI coordinates using virtual cameras corresponding to the
position and orientation of the stereo rig at time T − 1 with respect to the current
reference system; this process generates the depth map DT

T−1, which can be directly
compared to DT−1, computed at T − 1. Each pixel of DT

T−1 is analyzed, and con-
sidered valid only if at least one of the pixels of DT−1 within a 3×3 window has a
disparity value close enough.

3.2.3 Obstacle Detection

Since no assumptions could be made on the road infrastructure quality and the kind
of traffic to expect, the obstacle detection algorithm design followed the approach
first described in [20]. This technique defines a criterion to cluster points into ob-
stacles based on their layout in space and on the physical characteristics of the ego-
vehicle, namely its height Hmax, the minimum relevant obstacle height Hmin and the
maximum traversable slope θmax. Given two points pw1 and pw2 these constraints
are used to define a truncated cone in space, with the vertex corresponding to pw1,
as depicted in Fig. 13: if pw2 falls within the cone it is labeled as an obstacle, and
pw1 and pw2 are said to be compatible.

Fig. 13 (a) Compatibility criterion used during the clustering phase. Point pw2 is considered
an obstacle since its position relative to pw1 leads to a path which is not traversable by the
ego-vehicle.

To reduce the number of comparisons to perform, compatibility checks are car-
ried out in image coordinates, rather than in the world: this is done by projecting the
truncated cone back onto the image using camera calibration information, thus (ap-
proximately) obtaining a trapezium, and checking whether the constraint is valid for
the disparity points contained within it. Iterating on the disparity space image from
bottom to top, and from left to right, it is possible to correctly cluster the whole data
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set. During the clustering phase each region is assigned a unique label; to ensure
that a single obstacle does not get split into multiple adjacent regions the following
strategy is adopted: let lw1 and lw2 be the labels of points pw1 and pw2 respectively,
then

• if lw1 �= unde f ined and lw2 = unde f ined, lw2← lw1

• else if lw1 = unde f ined and lw2 �= unde f ined, lw1← lw2

• else if lw1 �= lw2 all the points with label lw2, plus pw2, are relabeled as lw1

The final result is saved into two dual representations:

• an image, having the same resolution of the depth map, where each pixel value
corresponds to a label ID;

• a vector of regions, each containing the list of its points.

Even using DSI coordinates the computational load associated with the clustering
phase is considerable, especially when using the dense depth map produced by the
SGM matching algorithm. In order to fully exploit the parallel processing capa-
bilities of the target hardware platform, a multi-resolution, multi-threaded analysis
scheme was devised.

The original DSI, along with its associated 3D world points vector, is split into
N images, each containing only points corresponding to a predefined range of dis-
tances on the X axis, as illustrated in Fig. 14.

Fig. 14 DSI partitioning. Separate depth maps are created, each corresponding to a slice of
world points, then the maps are analyzed in parallel on different CPU cores.

The depth maps are then sub-sampled in order to further reduce the number of
comparisons to perform: ideally constant spatial resolution can be achieved [22],
but in practice it is more convenient to fix a single resolution for each stripe;the
partitioning has been experimentally chosen as follows:

• 0 – 5 m→ 4× sub-sampling
• 5 – 15 m→ 2× sub-sampling
• 15 – 30 m→ full resolution
• 30 m – ∞→ full resolution
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After this step each slice is processed independently in parallel, leading to N sets
of labels; the sets are then copied back on a single, full-resolution map, upscaling
the sub-sampled clusters, while checking that the extrapolated points are similar
enough to the original ones, in order to avoid introducing blocky artifacts near depth
discontinuities.

A final pass is still needed to ensure that all labels are properly merged, since
an obstacle spanning across a slice boundary is still split in two distinct labels, as
shown in Fig. 15. Each point in each cluster is checked to determine whether the
value within the labels image corresponds to the one saved within the regions vector,
and in case they are different, the two points sets are merged together and the labels
image is updated accordingly.

(a) Input DSI. (b) Labels before merging. (c) Merged labels.

Fig. 15 Obstacles labeling on a steep road when driving uphill. First points are clustered
according to their relative pose, in parallel, on multiple CPU cores, then the labels are merged
and filtered to produce the final obstacles list. Note that despite the slope the vehicle is facing,
no false detection is triggered even without performing any explicit modeling of the ground.

3.3 Laser Obstacle Detection

Laser Obstacle Detection algorithm (LOD) exploit data coming from Lateral and
Front LIDARs (see Sec. Sensors) to perform obstacle detection and tracking.

The Laser Obstacle Detection processing follows these steps, shown in Fig. 16:

1. mapping and data fusion;
2. clustering;
3. clusters analysis and characterization;
4. clusters tracking;

Data collection
Dust and FOV

Filtering

Data Fusion Processing

Obstaces List

Map creation
Data Fusion

Clustering
Clusters Analysis

and Validation

Fig. 16 System architecture.
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3.3.1 Data Fusion

Lateral and Front LIDARs system are made of single and multi beam laserscanners,
with overlapping fields of views (FOVs). Hence, data fusion is performed with two
main aims:

• redundancy: inside the multi beam laserscanner’s FOV there is FOVs overlapping
with single beam laserscanners. Here echoes coming from single beam laserscan-
ners are considered only if they falls in locations whereat least one multi beam
laserscanner’s echo is already presents. This because the single beam laserscan-
ners are intrinsically less robust than multi beam. So, they are used to create
redundant information to reinforce the multi beam information;

• complementarity: outside the multi beam laserscanner’s FOV there is no FOVs
overlapping, here only single beam laserscanner can provide information. In
these regions we completely rely on the single beam laserscanners to extend the
Front LIDAR; here no terrain removal is possible;

3.3.2 Mapping

Data fusion happens when each echos is projected into a bird-eye-view map of the
space in front the vehicle, made of 10cm ·10cm cells, like the one shown in Fig. 17.

Actually this map is stored in memory as an 238 · 400 pixels gray scale image.
As shown if Fig. 17, there is a direct correspondence between pixels in row/column
coordinates and cells positions in XY coordinates. So, given an echo, it will be

Fig. 17 Grid where LIDARs’ beams are projected. Note how the reference system XY is
oriented as columns/rows in a typical image buffer.
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Fig. 18 Map’s grey scale values creation.

assigned to the corresponding cell, increasing the cell’s value: the higher the gray
value, the more echoes that have fell into that cell.

Once the grey values of each cell has been computed, on the basis of the corre-
sponding echos falling into them, values are also shared with each cell’s neighbor
to increase robustness, following this rule:

• 80% of the cell value is passed to neighbors within 1 pixel radius;
• 70% of the cell value is passed to neighbors within 4 pixel radius;
• 50% of the cell value is passed to neighbors within 9 pixel radius;
• 40% of the cell value is passed to neighbors within 13 pixel radius;

In Fig. 19 an example of map creation is shown. Note that the final map has been
eroded and dilated, to remove isolated pixels and fill missing pixels.

3.3.3 Clustering

The clustering phase tries to put together adjacent cells to create a list of ob-
jects/obstacles candidates. The list will be subsequently refined to remove clusters
that do not meet minimum size constrains. The clustering algorithm is shown in
Fig. 20.

Basically, for each not null pixel a 3× 3 neighborhood area is analyzed, to find
adjacent not null pixels. At the end of this first phase, to each pixel will be assigned
a grey scale value that no longer represent the number of echos fell into them, but
just a label that identifies pixels belonging its same cluster.

In a subsequent phase a 5× 5 neighborhood area is analyzed, to include those
pixels that were discarded during the erode and dilate operations.
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(a) (b)
Echos coming fro laserscanners Grey scale map

Fig. 19 Grey scale map generation

3.3.4 Object Moments

For each objects the corresponding Moments are computed. Image Moments are a
particular weighted average of the image pixels’ intensities. The simple moment of
(p+q) order is defined as follows:

Mpq =

∫ +∞

−∞

∫ +∞

−∞
xpyq f (x,y)dxdy p,q = 0,1,2, ... (9)

On the basis of the simple moments it is possible to compute the Hu Moments, that
provides useful information about object, such as centre of mass, main axes, orien-
tation. Moreover, Hu Moments are rotation, translation and scaling invariants, so
they result to be very useful for shape matching (see Sec. 3.3.5).

Moments are also used to perform a first object filtering:

• M00 correspond to the object area;
• {x̄, ȳ}= {M10

M00
, M01

M00
} is the center of mass

comparing area and position (with respect of the sensor) we can discard those ob-
jects that appear to be too small.
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Fig. 20 Clustering neighborhood schema and clustering algorithm

3.3.5 Tracking

There are a variety of tracking algorithm know in literture [26]. In our case the solu-
tion implemented for Laser Obstacle Detector is based on three main data structures:

• current objects: the list of the object detected at time current t;
• validated objects: the list of object that has been provided as output at time t−1;
• ghost objects: the list of validated object at time t−2 that have not been tracked

succesfully at time t− 1;

Each object i, validated at time t−1, is compared with each currently detected object
j, obtaining a match value as follows:

f i
j = 0.75(

ΔCMi j

ΔCMth
)+ 0.25mi j (10)
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Fig. 21 Tecnica di labelling

where ΔCMi j center of masses interdistance, ΔCMth is user define normalization
factor and mi j is a Hu Moments based shape match factor, computed as follows:

mi j = ∑
n=1...7

∣∣∣∣ 1
mi

n
− 1

m j
n

∣∣∣∣
{

mi
n = sign(φ i

n) · logφ i
n

m j
n = sign(φ j

n ) · logφ j
n

(11)

If a validated object j does not have any currently detected object i that lead to a
match value f i

j above a given threahols, object j is moved into the ghost list. An
object can stay into the ghost list no longer than 5 processing cycles, then it is
discarded.

All the currently detected object that have not been matched with any previously
validated object are directly inserted into the validated list, without any delay.

The new validated object list is delivered as the algorithm output.

3.3.6 Results

In Fig. 22 some processing results in details: (a)(b) the leader vehicle; (c)(d) a bush
near the road surface; (e)(f) a bicycles; (g)(h) a gardrail.

3.4 Vehicle Detection

The vehicle detector algorithm is used by the follower vehicle to detect the position
of the leader vehicle. As explained in the previous Sections, the leader vehicle is
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Fig. 22 Detection results details

a perfect copy of the follower, hence we know how it should appears in images
and laserscanners data. We use this a-priori knowledge to improve robustness and
efficiency.

Processing is based on the fusion between the two main sensors mounted on-
board: a laserscanners belt placed inside the front bumper and a panoramic view
system composed of three cameras placed inside the cabin in place of the rear view
mirror. The main steps are shown in the flowchart of Fig 23:

• a first preprocessing phase, based on LIDAR data, finds current possible vehicle
candidates;

• the panoramic image portions containing the vehicle candidates are analyzed un-
derstand if it actually contains a vehicle (e.g rear lights and leds are searched,
object size, plates, symmetry, ect.);

• if a previously detected vehicle (time t−1) is present, the corresponding portion
of the panoramic view is selected. Only this part of the image will be processed
at time t, to improve efficiency; moreover, the KLT features detected at time t−1
around the vehicle are tracked into the new image portion;

Fig. 23 System architecture.
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3.4.1 Laser Preprocessing: Vehicle Back Detection

Objects list provided by Laser Obstacle Detector (see Section 3.3) is here analyzed
to select a sublist of possible vehicles. Since we want to follow our leader vehicle,
we are interested in detecting the rear of this vehicle, if visible, not the front nor the
sides. In Fig. 24 we can see a couple of examples of how a vehicle can appear when
detected by a laserscanner: it can be a kind of L or just a simple line.

(a) (b)

Fig. 24 In general a vehivle detected by a laserscanner will appear like an L (b) or like a
simple line (a)

The processing to detect the correct segment is based, again, on the object’s Hu
Moments: main axes are rotated of an angle α computed as follows:

α =Θ −Δα, Δα =

⎧⎪⎨
⎪⎩

Whu
Lhu

π
4

Whu
Lhu

π
4 < 0

Whu
Lhu

π
4 + M00

2Mth
00
(π4 − Whu

Lhu

π
4 )

Whu
Lhu

π
4 > 0

(12)

whereΘ represents the current axes orientation angle. An example of object’s prin-
cipal axes rotation is shown in Fig. 25(a)(b).

Once we have properly detected the orientation of the object’s axes we can per-
form an iterative search process to precisely locate the segment position, as shown
in Fig 25(c)(d). For time efficiency only one axes is searched:

1. the axes with a length closest to the target vehicle width is preferred;
2. if axes’s lengths are very similar and we have a previously detected segment from

time t− 1, the axes along we search is the most perpendicular to the previously
detected segment;

3. if axes’s lengths are very similar and we do not have a previously detected vehi-
cle, the nearest axes to the vehicle is preferred.

As it might already be clear from case 2 on the previous list, vehicle segments
(representing the back of a vehicle) are also tracked over time with an algorithm
very similar to the one described in Secion 3.3.5.
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(a) (b)

(c) (d)

Fig. 25 Segment detection process: (a)(b) principal axes rotation; (c)(d) segment locatlization

3.4.2 Image Analysis

Once we have a list of vehicle candidates, each one represented by a 2D segment
corresponding to the vehicle rear side (back), we continue with an image processing
analysis of these candidates. In particular we try to understand which candidates
are actually vehicles and, among the validated vehicles list, which one is the most
similar to our target leader. The features alanyzed are the following:

• symmetry: every vehicle rear side has a high degree of symmetry; we know from
the laser preprocessing its width, where is located and which is the angle of
the vehicle back, hence we can set the symmetry axes right in the middle (as
shown in Fig. 26(b)) and compare each pixel with the corresponding on the other
side; counting how many pixels match with their corresponding we can obtain a
symmetry degree value. Note how we actually compare the edges pixels, not the
source image, as shown in Fig. 26(c).

• plate: our target vehicle has a white plate in a know position; again, on the basis
of the vehicle back position obtained from the laser preprocessing, we can search
for the platein a very limited area; The analysis is made by horizontal histogram
of the binarized srouce image, as shown in Fig. 26(d). The presence of a plate
increase the probability of the analyzed object to be validated as a vehicle;
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• rear light: again, we know the target vehicle rear light position, color and shape;
the presence of rear lights increase the probability of the analyzed object to be
validated as a vehicle; the read light detection in made analyzing the binarized
red image: an image made only of source’s red pixels (Fig. 26(d));

• color: our target vehicle is mostly orange; the color analysis does not change the
probability of a object of being a vehicle, but increase the probability of being the
target vehicle. Hence, this processing is made only on already validated vehicles.

At the end of this analysis the objects validated as a vehilce that matches best the
target vehicle characteristics (width, color, shape, etc.) is provided in output as the
leader vehicle. In Fig 28 some leader detection results are shown.

(a) (b) (c)

(d) (e) (f)

Fig. 26 Processing examples: (a) the vehicle candidate; (b) the possible symmetry axes; (c)
vertical histogram of the edges image; (d) binarized red image, for rear light detection; (e)
horizontal histogram, for plade detection; (f) binarized source image, thresholded for shadow
detection.

3.4.3 KLT Tracking

The leader vehicle is tracked over time by the KLT [18] [25] feature tracker:

1. when a leader vehicle is detected for the first time, the KLT Good Feature ex-
tractor is applied on the image protion containing the leader, to provide a list of
features to be tracked in subsequent frames;

2. when a leader vehicle is detected and it seems to be the same of the previous
frame (this information comes from the Laser Obstacle Detector tracker), KLT
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Track Features is called, to track features from the t−1 leader image portion to
the t leader image portion;

3. during the Track Features procedure, some features might not be tracked on the
new image portion; hence, after a while, the number of leader vehicle features
might become too low. In this case a new set of features is computed, again
calling KLT Good Feature extractor.

(a) (b) (c)

Fig. 27 KLT tracking: (a) features selected at time t − 1; (b) the same features tracked on
frame t; (c) selection of those features belonging the vehicle.

(a) (b)

(c) (d)

Fig. 28 Some detection results. Note how in (a) and (c) only the central camera is used,
while in (b) and (d) a portion of the panoramic view corresponding to half central and half
right camera has been used.
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KLT features traking is very useful when laserscanner is not able to detect the
leader vehicle. In this case the features coming from time t−1 are tracked, at time t,
on the current image. If the tracking is sucessful, the features cloud detected on the
leader vehicle at time t−1 are traslated on the actual vehicle position on the current
image. This will give us a new hint about the vehicle position, on the basis of which
we are going to select the image portion to be analyzed in the way described in
Sec. 3.4.2.

After a certain number of iterations whith no valid laser detections of the leader
vehicle, KLT tracking is interrupted and, consequentely, the algorithm will fail in
providing the expected output.

4 Statistics

Data coming from all the sensors and the path-planning system has been recorded
throughout the expedition, but using it to generate meaningful statistics for such an
extensive experiment is a challenging task, due to the lack of a ground truth. To
overcome this issue two strategies have been employed: in controlled environments
with good GPS coverage (such as the demonstrations sites) a recorded path is used
as a reference, while in totally unknown areas a manned leader vehicle has been
used as a reference.

Even when the GPS signal is available, the measured error is only an approxima-
tion, given the limited accuracy provided by the unit installed on the vehicles, which
does not use technologies like DGPS or GPS-RTK.

4.1 Preliminary Test

During development several preliminary tests were performed, involving a number
of kilometers of autonomous driving in different weather and environmental con-
ditions. Experimental results shown in this first part were obtained by testing the
vehicles inside the 2 km long loop of the Parma University Campus (Fig. 29), and
in its surroundings, both in urban and rural scenarios.

In Fig. 30(a) and 30(b) the results of WayPoint Following autonomous tests (6
laps performed inside the university campus) are presented: the mean crosstrack
error reported by this experiment was of 0.13 m, and its standard deviation was of
0.15 m. The average speed on this test was 26 km/h and the maximum speed reached
was 46 km/h.

Autonomous driving performance in leader follower mode, both in urban and ex-
traurban areas are shown in Fig. 31(a) and 31(b): the mean crosstrack error is 0.17 m,
and its standard deviation is 18 m. The average speed on this test was 28 km/h (max-
imum 50 km/h).
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Fig. 29 The test-bed: University of Parma campus area.

(a) (b)

Fig. 30 Plot of lateral crosstrack error (a) and relative histogram (b) during the experiment of
22 minutes of autonomous operations on campus with autonomous GPS Waypoint following.

The significant increase in the lateral crosstrack error is explained by the presence
of obstacles along the road which influence the trajectory of the vehicle as it replans
to avoid them, moving it away from the original WayPoint.

4.2 The Challenge Statistics

In this section the performance in autonomous mode of the 4 electrical vehicles on
the whole trip is presented. Officially the expedition started on 26 of July in Parma
and ended on 28 of October in Shanghai after crossing eight states and performing
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(a) (b)

Fig. 31 Plot of lateral crosstrack error (a) and relative histogram (b) during the experiment
of 21 minutes of autonomous operations in urban and rural environments with vehicle in
autonomous Leader Vehicle following.

Fig. 32 Temperatures reported by inertial sensor during the whole trip.

demos in 22 different cities. The convoy was composed by 4 electric autonomous
vehicles, 3 support trucks and 4 RVS.

An idea of the different environments encountered and the extreme stress condi-
tions the components suffered can be seen from Fig. 32, which shows the tempera-
ture reported by the sensors installed on top of the vehicles.

The data collected refers to the effective 61 days of autonomous driving: alto-
gether 214 hours were traveled divided into 191 different runs. Usually the runs
ended when no battery power was left, but sometimes logistic needs mandated a
stop, such as when crossing a state border. The maximum distance traveled in au-
tonomous mode was 96.7 km. A detailed chart of travelled distance per day is shown
in Fig. 33. In this graph also it is possible to see which major cities were touched,
the states borders and the days when demonstrations were performed. It was not
possible to travel non-stop every day for different reasons; for organizational re-
quirements, the first week was used for demonstrations in several italian cities and
to allow last-minute systems tuning. Several days during the trip were devoted to
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Fig. 33 Travelled distance in autonomous mode per day. Different colors are used to indicate
the distance performed by each of four different vehicles. The expedition was involved in
demonstrations on days marked with boldface.

Fig. 34 Speed profile performed by the test vehicles during the whole experiment.

demonstrations of autonomous driving in the visited cities downtown. Finally other
days were used to solve mechanical problems, or pass through customs. For these
reasons, since the arrival in Shanghai could not be postponed, part of the trip was
made with vehicles loaded on the support trucks.
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The analysis of all tracks gives the total distance travelled in autonomous mode:
in the whole trip 8244 km were covered in autonomous mode at an average speed
of 38.4 km/h and a maximum speed of 70.9 km/h. A detail speed profile is reported
in Fig. 34. The maximum distance covered in a day was 273 km and the maximum
time in autonomous mode in a single day was 6 hours and 26 minutes.

A rough statistical pathplanner error using the route performed by the leader
vehicle as ground-truth can also be provided. The histogram with the distribution
of the differences between the paths made by the leader and the follower are shown
in Fig. 35. As previously mentioned the difference between the two paths could
also be given to the fact that the follower vehicle uses the leader trajectory as an
indication only and merges it with the sensor data to generate optimal trajectories
(e.g., to avoid an obstacle on the path).

Fig. 35 Histograms of lateral crosstrack errors in autonomous Leader Vehicle Following
mode generated by 8244 km of data analyzed.

5 Conclusions

The algorithms were tested during the whole VIAC expedition, under a wide variety
of driving conditions and environments, such as chaotic traffic, heavy rain, fog, dust
and unpaved roads. Some critical scenarios, detailed in the following, have emerged:
the recorded data will be fundamental to further develop each algorithm and address
the most complex situations.
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5.1 Laser Obstacle Detection

Laserscanners are inherently sensitive to heavy rain and dust. Some devices, like the
front LIDAR we installed on our vehicles, feature echos classification, with which it
is possible to filter out rain and dust reflections. However, when the density of these
elements become too high, laserscanners are no longer able to distinguish echos
genereted by solid or by clouds of particles, consequently false detections might
occur, as in Fig. 36.

(a) (b)

Fig. 36 Laser Obstacle Detection in case of dense dust: (a) echoes; (b) false detection

5.2 Lane Detection

Lane detection has produced robust results throughout the trip, even in heavy traffic
conditions; nonetheless, some critical scenarios have been identified, such as a num-
ber of roads in asian countries where lane markings are characterized by distant and
relatively short dashes, which are hard to correctly join together without producing
false detections. Better integration with the IMU, allowing more predictable interest
areas, is expected to improve the results.

5.3 Stereo Obstacle Detection

The obstacle detection algorithm has been designed making no assumptions on the
scenarios to analyze, and this has proven a successful choice, since most situations
are handled correctly. As explained in Sec.3.2.1, to reduce the number of missed
detections to a minimum after the trip the stereo matching algorithm has been sub-
stituted with a SGM-based one, providing denser and more accurate maps.

5.4 Vehicle Detection

Vehicle Detection algorithm is sensitive to chaotic traffic, especially when other ve-
hicles cut in between leader and follower vehicles. Even if the algorithm is able to



248 A. Broggi et al.

distinguish between a generic vehicle and the searched leader vehicle (analyzing
colors, shape, position and size of rear light, etc., as explaied in Sec. 3.4.2) in these
scenarios, typically, the leader is completely occluded and no detections are possi-
ble. Another critical situation is when a vehicle and another object, like a pedestrian
or a bicycle, are fused together by the laser scanner: in this case the algorithm is
no longer able to detect the vehicle shape, as explained in Sec. 3.4.1, and the leader
detection may fail, like in Fig. 37.

(c)

Fig. 37 A vehicle and a pedestrian fused together by the Vehicle Detector

5.5 The Final Word

All in all the test was extremely successful since it provided the data that were
needed. Although the test already ended and some conclusions can now be drawn
on the systems’ performance, the set of data acquired throughout the trip will be
extremely valuable also in the coming future. It is estimated that they will provide
an additional value to the improvement of the current algorithms and the design and
prototyping of new ones for the next 2-3 years.
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